LeetCode 96. Unique Binary Search Trees (独立二叉搜索树)

原题

Given n, how many structurally unique BST’s (binary search trees) that store values 1 … n?

Example:

Input: 3
Output: 5
Explanation:
Given n = 3, there are a total of 5 unique BST's:

   1         3     3      2      1
    \       /     /      / \      \
     3     2     1      1   3      2
    /     /       \                 \
   2     1         2                 3

Reference Answer

思路分析

首先明确n个不等的数它们能构成的二叉搜索树的种类都是相等的。而且1到n都可以作为二叉搜索树的根节点,当k是根节点时,它的左边有k-1个不等的数,它的右边有n-k个不等的数。以k为根节点的二叉搜索树的种类就是左右可能的种类的乘积。用递推式表示就是 h ( n ) = h ( 0 ) ∗ h ( n − 1 ) + h ( 1 ) ∗ h ( n − 2 ) + . . . + h ( n − 1 ) h ( 0 ) ( 其 中 n > = 2 ) h(n) = h(0)*h(n-1) + h(1)*h(n-2) + ... + h(n-1)h(0) (其中n>=2) h(n)=h(0)h(n1)+h(1)h(n2)+...+h(n1)h(0)(n>=2) ,其中h(0)=h(1)=1,因为0个或者1个数能组成的形状都只有一个。从1到n依次算出h(x)的值即可。此外这其实就是一个卡特兰数,可以直接用数学公式计算,不过上面的方法更加直观一些。

Reference Code

class Solution:
    def numTrees(self, n):
        """
        :type n: int
        :rtype: int
        """
#         if n == 0 or n == 1:
#             return 1
#         elif n == 2:
#             return 2
#         else:
#             res = 0
#             for i in range(n):
#                 res += self.numTrees(i) * self.numTrees(n-i-1)
#             return res
        res = [1,1]
        for i in range(2,n+1):
            count = 0
            for j in range(i):
                count += res[j] * res[i-j-1]
            res.append(count)
        return res[-1]

Note:

  1. 动态规划的使用主要难点在于递归公式的寻找,如本题 h ( n ) = h ( 0 ) ∗ h ( n − 1 ) + h ( 1 ) ∗ h ( n − 2 ) + . . . + h ( n − 1 ) h ( 0 ) ( 其 中 n > = 2 ) h(n) = h(0)*h(n-1) + h(1)*h(n-2) + ... + h(n-1)h(0) (其中n>=2) h(n)=h(0)h(n1)+h(1)h(n2)+...+h(n1)h(0)(n>=2)

参考文献

[1] https://shenjie1993.gitbooks.io/leetcode-python/096 Unique Binary Search Trees.html

你可能感兴趣的:(LeetCode 96. Unique Binary Search Trees (独立二叉搜索树))