TMS2833X之ePWM模块_2

上一篇讲述到F2833x系列ePWM模块结构,以及介绍了ePWM模块中的子模块时间基准模块(DB),其主要作用是设置PWM波形的周期,以及输出一系列事件(如CTR=ZERO)等供其他模块使用,下面接着介绍ePWM中的其它子模块。
TMS2833X之ePWM模块_2_第1张图片

1 ePWM 计数比较模块CC

计数器比较模块是以时基计数器的计数值作为输入,与比较寄存器CMPA和CMPB不断进行比较,当时基计数器的值等于CMPA时,就产生比较事件CTR = CMPA;当时基计数器的值等于CMPB时,就产生比较事件CTR = CMPB。计数寄存器模块有以下要点进行说明:

  • 计数比较模块进行恰当配置后,可以控制PWM波形的占空比。
  • 采用影子寄存器来更新比较寄存器可有效防止在PWM周期内出现故障以及毛刺,其具体应用可参考上一篇TB子模块中影子寄存器的介绍。
    计数器比较模块的子结构图如下,逻辑比较简单,不再详细介绍。
    TMS2833X之ePWM模块_2_第2张图片

2 ePWM 动作模块AQ

动作模块在PWM波形形成过程中起到关键作用,它决定了相应事件发生时应该输出什么样的电平,模块执行框图如下图所示。TMS2833X之ePWM模块_2_第3张图片
动作模块操作这里通过配置寄存器代码与波形图结合来说明。

  • 示例1
// Initialization Time
// = = = = = = = = = = = = = = = = = = = = = = = =
EPwm1Regs.TBPRD = 600;                                     // 计数周期 = 601 TBCLK counts
EPwm1Regs.CMPA.half.CMPA = 350;                            // 比较寄存器A = 350 TBCLK counts
EPwm1Regs.CMPB = 200;                                      // 比较寄存器B = 200 TBCLK counts
EPwm1Regs.TBPHS = 0;                                       // 相位寄存器置0
EPwm1Regs.TBCTR = 0;                                       // 计数值清0
EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP;                // 计数方式采用递增计数
EPwm1Regs.TBCTL.bit.PHSEN = TB_DISABLE;                    //禁止相位加载
EPwm1Regs.TBCTL.bit.PRDLD = TB_SHADOW;                     // 采用影子寄存器
EPwm1Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_DISABLE;            //禁止同步输出
EPwm1Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1;                   // 时基寄存器预分频
EPwm1Regs.TBCTL.bit.CLKDIV = TB_DIV1;
EPwm1Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;                //CMPA采用影子寄存器加载
EPwm1Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;                //CMPB采用影子寄存器加载
EPwm1Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;              // CTR = Zero时CMPA从影子寄存器加载
EPwm1Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;              // CTR = Zero时CMPB从影子寄存器加载
EPwm1Regs.AQCTLA.bit.ZRO = AQ_SET;                         // CTR = ZERO事件发生时ePWMA输出高电平
EPwm1Regs.AQCTLA.bit.CAU = AQ_CLEAR;                       // CMPA = 计数值(递增中)事件发生时ePWMA输出低电平
EPwm1Regs.AQCTLB.bit.ZRO = AQ_SET;                         // CTR = ZERO事件发生时ePWMB输出高电平
EPwm1Regs.AQCTLB.bit.CBU = AQ_CLEAR;                       // CMPA = 计数值(递增中)事件发生时ePWMB输出低电平
//
// Run Time
// = = = = = = = = = = = = = = = = = = = = = = = =
EPwm1Regs.CMPA.half.CMPA = Duty1A;                         // 调整ePWM1A的占空比
EPwm1Regs.CMPB = Duty1B;                                   // 调整ePWM1B的占空比

上述配置代码输出波形如下图所示:
TMS2833X之ePWM模块_2_第4张图片

  • 示例2
    下面代码只表示一些核心配置,其他部分省略
EPwm1Regs.TBPRD = 600;                                     // 计数周期 = 601 TBCLK counts
EPwm1Regs.CMPA.half.CMPA = 350;                            // 比较寄存器A = 350 TBCLK counts
EPwm1Regs.CMPB = 200;                                      // 比较寄存器B = 200 TBCLK counts
EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP;                // 计数方式采用递增计数
EPwm1Regs.AQCTLA.bit.PRD = AQ_CLEAR;                       // CTR = PRD事件发生时ePWMA输出低电平
EPwm1Regs.AQCTLA.bit.CAU = AQ_SET;                         // CMPA = 计数值(递增中)事件发生时ePWMA输出高电平
EPwm1Regs.AQCTLB.bit.PRD = AQ_CLEAR;                       // CTR = PRD事件发生时ePWMB输出低电平
EPwm1Regs.AQCTLB.bit.CBU = AQ_SET;                         // CMPB = 计数值(递增中)事件发生时ePWMB输出高电平

上述配置代码输出波形如下图所示:
TMS2833X之ePWM模块_2_第5张图片

  • 示例3
    下面代码只表示一些核心配置,其他部分省略
EPwm1Regs.TBPRD = 600;                                     // 计数周期 = 601 TBCLK counts
EPwm1Regs.CMPA.half.CMPA = 200;                            // 比较寄存器A = 200 TBCLK counts
EPwm1Regs.CMPB = 400;                                      // 比较寄存器B = 400 TBCLK counts
EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP;                // 计数方式采用递增计数
EPwm1Regs.AQCTLA.bit.CAU = AQ_SET;                         // CMPA = 计数值(递增中)事件发生时ePWMA输出高电平
EPwm1Regs.AQCTLA.bit.CBU = AQ_CLEAR;                       // CMPB = 计数值(递增中)事件发生时ePWMA输出低电平
EPwm1Regs.AQCTLB.bit.ZRO= AQ_TOGGLE;                       // CTR = ZERO事件发生时ePWMB电平反转

上述配置代码输出波形如下图所示:
TMS2833X之ePWM模块_2_第6张图片

  • 示例4
    下面代码只表示一些核心配置,其他部分省略
EPwm1Regs.TBPRD = 600;                                     // 计数周期 = 601 TBCLK counts
EPwm1Regs.CMPA.half.CMPA = 400;                            // 比较寄存器A = 400 TBCLK counts
EPwm1Regs.CMPB = 500;                                      // 比较寄存器B = 500 TBCLK counts
EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN;            // 计数方式采用递增、减计数
EPwm1Regs.AQCTLA.bit.CAU = AQ_SET;                         // CMPA = 计数值(递增中)事件发生时ePWMA输出高电平
EPwm1Regs.AQCTLA.bit.CAD = AQ_CLEAR;                       // CMPA = 计数值(递减中)事件发生时ePWMA输出低电平
EPwm1Regs.AQCTLB.bit.CBU= AQ_SET;                         // CMPB = 计数值(递增中)事件发生时ePWMA输出高电平
EPwm1Regs.AQCTLB.bit.CBD= AQ_CLEAR;                       // CMPB = 计数值(递减中)事件发生时ePWMA输出低电平

上述配置代码输出波形如下图所示:
TMS2833X之ePWM模块_2_第7张图片

  • 示例5
    下面代码只表示一些核心配置,其他部分省略
EPwm1Regs.TBPRD = 600;                                     // 计数周期 = 601 TBCLK counts
EPwm1Regs.CMPA.half.CMPA = 350;                            // 比较寄存器A = 350 TBCLK counts
EPwm1Regs.CMPB = 400;                                      // 比较寄存器B = 400 TBCLK counts
EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN;            // 计数方式采用递增、减计数
EPwm1Regs.AQCTLA.bit.CAU = AQ_SET;                         // CMPA = 计数值(递增中)事件发生时ePWMA输出高电平
EPwm1Regs.AQCTLA.bit.CAD = AQ_CLEAR;                       // CMPA = 计数值(递减中)事件发生时ePWMA输出低电平
EPwm1Regs.AQCTLB.bit.CBU= AQ_CLEAR;                         // CMPB = 计数值(递增中)事件发生时ePWMA输出低电平
EPwm1Regs.AQCTLB.bit.CBD= AQ_SET;                       // CMPB = 计数值(递减中)事件发生时ePWMA输出高电平

上述配置代码输出波形如下图所示:
TMS2833X之ePWM模块_2_第8张图片

  • 示例6
    下面代码只表示一些核心配置,其他部分省略
EPwm1Regs.TBPRD = 600;                                     // 计数周期 = 601 TBCLK counts
EPwm1Regs.CMPA.half.CMPA = 250;                            // 比较寄存器A = 250 TBCLK counts
EPwm1Regs.CMPB = 450;                                      // 比较寄存器B = 450 TBCLK counts
EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN;            // 计数方式采用递增、减计数
EPwm1Regs.AQCTLA.bit.CAU = AQ_SET;                         // CMPA = 计数值(递增中)事件发生时ePWMA输出高电平
EPwm1Regs.AQCTLA.bit.CBD = AQ_CLEAR;                       // CMPB = 计数值(递减中)事件发生时ePWMA输出低电平
EPwm1Regs.AQCTLB.bit.ZRO= AQ_CLEAR;                        // CMPB = ZERO事件发生时ePWMB输出低电平
EPwm1Regs.AQCTLB.bit.PRD= AQ_SET;                          // CMPB = RPD事件发生时ePWMB输出高电平

上述配置代码输出波形如下图所示:
TMS2833X之ePWM模块_2_第9张图片

3.代码实例

下面再通过一个实际代码实例来说明ePWM模块中寄存器的相关设置,改代码实例涉及到TB、CC、AQ、ET等子模块,通过配置寄存器参数输出PWM波形,并触发INT中断,且程序中通过中断触发计数次数(10次)动态调整CMPA、CMPB的值。

//定义ePWM信息记忆结构体
typedef struct
{
   volatile struct EPWM_REGS *EPwmRegHandle;
   Uint16 EPwm_CMPA_Direction;
   Uint16 EPwm_CMPB_Direction;
   Uint16 EPwmTimerIntCount;
   Uint16 EPwmMaxCMPA;
   Uint16 EPwmMinCMPA;
   Uint16 EPwmMaxCMPB;
   Uint16 EPwmMinCMPB;
}EPWM_INFO;

// 定义ePWM1~3初始化函数及中断执行函数、用户定制更新CMPA/B函数
void InitEPwm1Example(void);
void InitEPwm2Example(void);
void InitEPwm3Example(void);
interrupt void epwm1_isr(void);
interrupt void epwm2_isr(void);
interrupt void epwm3_isr(void);
void update_compare(EPWM_INFO*);

// 示例中用到的全局变量
EPWM_INFO epwm1_info;
EPWM_INFO epwm2_info;
EPWM_INFO epwm3_info;

// 为ePWM1~3定义周期寄存器、比较寄存器最大、最小值
#define EPWM1_TIMER_TBPRD  2000  // Period register
#define EPWM1_MAX_CMPA     1950
#define EPWM1_MIN_CMPA       50
#define EPWM1_MAX_CMPB     1950
#define EPWM1_MIN_CMPB       50

#define EPWM2_TIMER_TBPRD  2000  // Period register
#define EPWM2_MAX_CMPA     1950
#define EPWM2_MIN_CMPA       50
#define EPWM2_MAX_CMPB     1950
#define EPWM2_MIN_CMPB       50

#define EPWM3_TIMER_TBPRD  2000  // Period register
#define EPWM3_MAX_CMPA      950
#define EPWM3_MIN_CMPA       50
#define EPWM3_MAX_CMPB     1950
#define EPWM3_MIN_CMPB     1050

#define EPWM_CMP_UP   1
#define EPWM_CMP_DOWN 0

//主调用函数
void main(void)
{
//以下为一些初始执行函数,不仔细说明
   InitSysCtrl();
   InitEPwm1Gpio();
   InitEPwm2Gpio();
   InitEPwm3Gpio();
   DINT;
   InitPieCtrl();
   IER = 0x0000;
   IFR = 0x0000;
   InitPieVectTable();
   EALLOW;  /
   PieVectTable.EPWM1_INT = &epwm1_isr;
   PieVectTable.EPWM2_INT = &epwm2_isr;
   PieVectTable.EPWM3_INT = &epwm3_isr;
   EDIS;   

   EALLOW;
   SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 0;     // 时基计数器停止计数
   EDIS;
   //配置ePWM1~3
   InitEPwm1Example();
   InitEPwm2Example();
   InitEPwm3Example();

   EALLOW;
   SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 1;    // 时基计数器开始计数
   EDIS;

   // 使能CPU中断使能标志位
   IER |= M_INT3;
   // 使能PIE中断使能标志位
   PieCtrlRegs.PIEIER3.bit.INTx1 = 1;
   PieCtrlRegs.PIEIER3.bit.INTx2 = 1;
   PieCtrlRegs.PIEIER3.bit.INTx3 = 1;
   // 使能全局中断标志INTM
   EINT;   
   ERTM;   
   // 循环体
   for(;;)
   {
       asm("          NOP");
   }
}

// ePWM1中断执行函数体
interrupt void epwm1_isr(void)
{
   // 更新CMPA和CMPB的值
   update_compare(&epwm1_info);
   EPwm1Regs.ETCLR.bit.INT = 1;
   PieCtrlRegs.PIEACK.all = PIEACK_GROUP3;
}
// 初始化ePWM1
void InitEPwm1Example()
{
   EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP; // 计数模式设置为递增计数
   EPwm1Regs.TBPRD = EPWM1_TIMER_TBPRD;       // 时基计数值为2000
   EPwm1Regs.TBCTL.bit.PHSEN = TB_DISABLE;    // 禁止计数计时器装载相位寄存器
   EPwm1Regs.TBPHS.half.TBPHS = 0x0000;       // 相位设置为0
   EPwm1Regs.TBCTR = 0x0000;                  // 计数器清零
   EPwm1Regs.TBCTL.bit.HSPCLKDIV = TB_DIV2;   // TBCLK = SYSCLKOUT / (HSPCLKDIV * CLKDIV);
   EPwm1Regs.TBCTL.bit.CLKDIV = TB_DIV2;

   EPwm1Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;    //CMPA使用影子寄存器
   EPwm1Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;    //CMPB使用影子寄存器
   EPwm1Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;  //当产生CTR = 0时间时从影子寄存器加载CMPA的值到活动寄存器
   EPwm1Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;  //当产生CTR = 0时间时从影子寄存器加载CMPB的值到活动寄存器

   EPwm1Regs.CMPA.half.CMPA = EPWM1_MIN_CMPA;    // 设置CMPA的值
   EPwm1Regs.CMPB = EPWM1_MIN_CMPB;              // 设置CMPB的值

   EPwm1Regs.AQCTLA.bit.ZRO = AQ_SET;            // 计数器等于0时ePWMA输出高电平
   EPwm1Regs.AQCTLA.bit.CAU = AQ_CLEAR;          // 递增计数等于CMPA时,ePWMA输出低电平

   EPwm1Regs.AQCTLB.bit.ZRO = AQ_SET;            // 计数器等于0时ePWMB输出高电平
   EPwm1Regs.AQCTLB.bit.CBU = AQ_CLEAR;          // 递增计数等于CMPB时,ePWMB输出低电平0

   EPwm1Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO;     // CTR = 0事件发生时产生INT中断
   EPwm1Regs.ETSEL.bit.INTEN = 1;                // INT中断使能
   EPwm1Regs.ETPS.bit.INTPRD = ET_3RD;           // 每产生3次CTR = 0事件触发一次中断
   //记录相关ePWM1的配置
   epwm1_info.EPwm_CMPA_Direction = EPWM_CMP_UP; 
   epwm1_info.EPwm_CMPB_Direction = EPWM_CMP_UP;
   epwm1_info.EPwmTimerIntCount = 0;             
   epwm1_info.EPwmRegHandle = &EPwm1Regs;       
   epwm1_info.EPwmMaxCMPA = EPWM1_MAX_CMPA;     
   epwm1_info.EPwmMinCMPA = EPWM1_MIN_CMPA;
   epwm1_info.EPwmMaxCMPB = EPWM1_MAX_CMPB;
   epwm1_info.EPwmMinCMPB = EPWM1_MIN_CMPB;

}

void update_compare(EPWM_INFO *epwm_info)
{
   // 没发生10次中断,改变CMPA和CMPB的值
   if(epwm_info->EPwmTimerIntCount == 10)
   {
       epwm_info->EPwmTimerIntCount = 0;
       if(epwm_info->EPwm_CMPA_Direction == EPWM_CMP_UP)
	{
	//ePWMA的值当前处于递增中
	       if(epwm_info->EPwmRegHandle->CMPA.half.CMPA  <  epwm_info->EPwmMaxCMPA)
	       {
	       // CMPA的值 小于 设置的CMPA最大值,执行递增操作,否则,将ePWM设置为递减中,并对CMPA的值执行递增操作
	          epwm_info->EPwmRegHandle->CMPA.half.CMPA++;
	       }
	       else
	       {
	          epwm_info->EPwm_CMPA_Direction = EPWM_CMP_DOWN;
              epwm_info->EPwmRegHandle->CMPA.half.CMPA--;
	       }
       }
      else
       {
       //与上面的操作相反
	       if(epwm_info->EPwmRegHandle->CMPA.half.CMPA == epwm_info->EPwmMinCMPA)
	       {
	          epwm_info->EPwm_CMPA_Direction = EPWM_CMP_UP;
	          epwm_info->EPwmRegHandle->CMPA.half.CMPA++;
	       }
	       else
	       {
	          epwm_info->EPwmRegHandle->CMPA.half.CMPA--;
	       }
       }

     //ePWMB的值的处理与ePWMA相等同
      if(epwm_info->EPwm_CMPB_Direction == EPWM_CMP_UP)
      {
	       if(epwm_info->EPwmRegHandle->CMPB < epwm_info->EPwmMaxCMPB)
	       {
	          epwm_info->EPwmRegHandle->CMPB++;
	       }
	       else
	       {
	          epwm_info->EPwm_CMPB_Direction = EPWM_CMP_DOWN;
	          epwm_info->EPwmRegHandle->CMPB--;
	       }
     }
     else
      {
	       if(epwm_info->EPwmRegHandle->CMPB == epwm_info->EPwmMinCMPB)
	       {
	          epwm_info->EPwm_CMPB_Direction = EPWM_CMP_UP;
	          epwm_info->EPwmRegHandle->CMPB++;
	       }
	       else
	       {
	          epwm_info->EPwmRegHandle->CMPB--;
	       }
       }
   }
   else
   {
      epwm_info->EPwmTimerIntCount++;
   }
   return;
}

你可能感兴趣的:(DSP)