时间序列之MA(滑动平均模型)

具有如下结构的模型称为q阶移动平均(moving average)模型,简记为MA(q):
时间序列之MA(滑动平均模型)_第1张图片
使用MA(q)需要满足两个条件:
时间序列之MA(滑动平均模型)_第2张图片

MA模型的性质

1.当q小于无穷时,MA(q)模型具有均值。
2.常数方差。
3.自协方差函数只与滞后阶数相关,且q阶截尾
时间序列之MA(滑动平均模型)_第3张图片
4.自相关系数q阶截尾
时间序列之MA(滑动平均模型)_第4张图片

MA模型的可逆性

绘制下列MA模型的样子自相关图,直观考察MA模型自相关系数截尾的特性。
时间序列之MA(滑动平均模型)_第5张图片

x1 = arima.sim(n=1000,list(ma=-2))
acf(x1)

时间序列之MA(滑动平均模型)_第6张图片

x2 = arima.sim(n=1000,list(ma=-0.5))
acf(x2)

时间序列之MA(滑动平均模型)_第7张图片

x3 = arima.sim(n=1000,list(ma=c(-4/5,16/25)))
acf(x3)

时间序列之MA(滑动平均模型)_第8张图片

x4 = arima.sim(n=1000,list(ma=c(-5/4,25/16)))
acf(x4)

时间序列之MA(滑动平均模型)_第9张图片
排除样本随机性的影响,样本自相关图清晰显示出MA(1)模型自相关系数一阶截尾,MA(2)模型自相关系数二阶截尾特征。
时间序列之MA(滑动平均模型)_第10张图片
不同的模型却拥有完全相同的自相关系数,一个自相关系数未必对应一个平稳的时间序列模型。
这种自相关系数对应模型的不唯一性会给我们以后的工作带来很大麻烦。因为我们将根据样本自相关系数显示出来的特征选择合适的模型拟合序列的发展,如果自相关系数和模型之间不是一一对应关系,就会导致拟合模型的随机序列之间不是一一对应关系。
为了保证一个给定的自相关系数能够对应唯一的MA模型,我们就要给模型增加约束条件。这个约束条件称为MA模型的可逆性(invertibility条件)。
这里写图片描述
MA模型是否可逆如下表:
时间序列之MA(滑动平均模型)_第11张图片
对可逆函数可以对其进行逆转化。

偏自相关系数

pacf(x1)
pacf(x2)
pacf(x3)
pacf(x4)

时间序列之MA(滑动平均模型)_第12张图片
时间序列之MA(滑动平均模型)_第13张图片
时间序列之MA(滑动平均模型)_第14张图片
时间序列之MA(滑动平均模型)_第15张图片

你可能感兴趣的:(平稳时间序列)