正常情况下,每个子线程完成各自的任务就可以结束了。不过有的时候,我们希望多个线程协同工作来完成某个任务,这时就涉及到了线程间通信了。
本文涉及到的知识点:
thread.join()
,object.wait()
,object.notify()
,CountdownLatch
,CyclicBarrier
,FutureTask
,Callable
等。
下面我从几个例子作为切入点来讲解下 Java 里有哪些方法来实现线程间通信。
两
个线程按照指定方式有序交叉运行呢? 假设有两个线程,一个是线程 A,另一个是线程 B,两个线程分别依次打印 1-3 三个数字即可。我们来看下代码:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 |
private static void demo1() { Thread A = new Thread(new Runnable() { @Override public void run() { printNumber("A"); } }); Thread B = new Thread(new Runnable() { @Override public void run() { printNumber("B"); } }); A.start(); B.start(); } |
其中的 printNumber(String)
实现如下,用来依次打印 1
, 2
, 3
三个数字:
1 2 3 4 5 6 7 8 9 10 11 |
private static void printNumber(String threadName) { int i=0; while (i++ < 3) { try { Thread.sleep(100); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println(threadName + " print: " + i); } } |
这时我们得到的结果是:
B print: 1
A print: 1
B print: 2
A print: 2
B print: 3
A print: 3
可以看到 A 和 B 是同时打印的。
那么,如果我们希望 B 在 A 全部打印
完后再开始打印呢?我们可以利用 thread.join()
方法,代码如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 |
private static void demo2() { Thread A = new Thread(new Runnable() { @Override public void run() { printNumber("A"); } }); Thread B = new Thread(new Runnable() { @Override public void run() { System.out.println("B 开始等待 A"); try { A.join(); } catch (InterruptedException e) { e.printStackTrace(); } printNumber("B"); } }); B.start(); A.start(); } |
得到的结果如下:
B 开始等待 A
A print: 1
A print: 2
A print: 3B print: 1
B print: 2
B print: 3
所以我们能看到 A.join()
方法会让 B 一直等待直到 A 运行完毕。
两
个线程按照指定方式有序交叉运行呢? 还是上面那个例子,我现在希望 A 在打印完 1
后,再让 B 打印 1
, 2
, 3
,最后再回到 A 继续打印 2
, 3
。这种需求下,显然 Thread.join()
已经不能满足了。我们需要更细粒度的锁来控制执行顺序。
这里,我们可以利用 object.wait()
和 object.notify()
两个方法来实现。代码如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
/** * A 1, B 1, B 2, B 3, A 2, A 3 */ private static void demo3() { Object lock = new Object(); Thread A = new Thread(new Runnable() { @Override public void run() { synchronized (lock) { System.out.println("A 1"); try { lock.wait(); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("A 2"); System.out.println("A 3"); } } }); Thread B = new Thread(new Runnable() { @Override public void run() { synchronized (lock) { System.out.println("B 1"); System.out.println("B 2"); System.out.println("B 3"); lock.notify(); } } }); A.start(); B.start(); } |
打印结果如下:
A 1
A waiting…B 1
B 2
B 3
A 2
A 3
正是我们要的结果。
那么,这个过程发生了什么呢?
lock.wait()
方法,交出锁的控制权,进入 wait
状态;lock.wait()
释放控制权后, B 才得到了锁;lock.notify()
方法,唤醒正在 wait
的 A;为了更好理解,我在上面的代码里加上 log 方便读者查看。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
private static void demo3() { Object lock = new Object(); Thread A = new Thread(new Runnable() { @Override public void run() { System.out.println("INFO: A 等待锁"); synchronized (lock) { System.out.println("INFO: A 得到了锁 lock"); System.out.println("A 1"); try { System.out.println("INFO: A 准备进入等待状态,放弃锁 lock 的控制权"); lock.wait(); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("INFO: 有人唤醒了 A, A 重新获得锁 lock"); System.out.println("A 2"); System.out.println("A 3"); } } }); Thread B = new Thread(new Runnable() { @Override public void run() { System.out.println("INFO: B 等待锁"); synchronized (lock) { System.out.println("INFO: B 得到了锁 lock"); System.out.println("B 1"); System.out.println("B 2"); System.out.println("B 3"); System.out.println("INFO: B 打印完毕,调用 notify 方法"); lock.notify(); } } }); A.start(); B.start(); } |
打印结果如下:
INFO: A 等待锁
INFO: A 得到了锁 lock
A 1
INFO: A 准备进入等待状态,调用 lock.wait() 放弃锁 lock 的控制权
INFO: B 等待锁
INFO: B 得到了锁 lock
B 1
B 2
B 3
INFO: B 打印完毕,调用 lock.notify() 方法
INFO: 有人唤醒了 A, A 重新获得锁 lock
A 2
A 3
最开始我们介绍了 thread.join()
,可以让一个线程等另一个线程运行完毕后再继续执行,那我们可以在 D 线程里依次 join A B C,不过这也就使得 A B C 必须依次执行,而我们要的是这三者能同步运行。
或者说,我们希望达到的目的是:A B C 三个线程同时运行,各自独立运行完后通知 D;对 D 而言,只要A B C 都运行完了,D 再开始运行。针对这种情况,我们可以利用 CountdownLatch
来实现这类通信方式。它的基本用法是:
等待线程
里调用 countDownLatch.await()
方法,进入等待状态,直到计数值变成 0;其他线程
里,调用 countDownLatch.countDown()
方法,该方法会将计数值减小 1;其他线程
的 countDown()
方法把计数值变成 0 时,等待线程
里的 countDownLatch.await()
立即退出,继续执行下面的代码。 实现代码如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
private static void runDAfterABC() { int worker = 3; CountDownLatch countDownLatch = new CountDownLatch(worker); new Thread(new Runnable() { @Override public void run() { System.out.println("D is waiting for other three threads"); try { countDownLatch.await(); System.out.println("All done, D starts working"); } catch (InterruptedException e) { e.printStackTrace(); } } }).start(); for (char threadName='A'; threadName <= 'C'; threadName++) { final String tN = String.valueOf(threadName); new Thread(new Runnable() { @Override public void run() { System.out.println(tN + " is working"); try { Thread.sleep(100); } catch (Exception e) { e.printStackTrace(); } System.out.println(tN + " finished"); countDownLatch.countDown(); } }).start(); } } |
下面是运行结果:
D is waiting for other three threads
A is working
B is working
C is workingA finished
C finished
B finished
All done, D starts working
其实简单点来说,CountDownLatch
就是一个倒计数器,我们把初始计数值设置为3
,当 D
运行时,先调用 countDownLatch.await()
检查计数器值是否为 0
,若不为 0
则保持等待状态;当A
B
C
各自运行完后都会利用countDownLatch.countDown()
,将倒计数器减 1
,当三个都运行完后,计数器被减至 0
;此时立即触发 D
的 await()
运行结束,继续向下执行。
因此,CountDownLatch
适用于一个线程去等待多个线程的情况。
上面是一个形象的比喻,针对线程 A B C 各自开始准备,直到三者都准备完毕,然后再同时运行
。也就是要实现一种线程之间互相等待
的效果,那应该怎么来实现呢?
上面的 CountDownLatch
可以用来倒计数,但当计数完毕,只有一个线程的 await()
会得到响应,无法让多个线程同时触发。
为了实现线程间互相等待这种需求,我们可以利用 CyclicBarrier
数据结构,它的基本用法是:
CyclicBarrier
对象,设置同时等待
的线程数,CyclicBarrier cyclicBarrier = new CyclicBarrier(3);cyclicBarrier.await();
即可开始等待别人;同时等待
的线程数都调用了 cyclicBarrier.await();
时,意味着这些线程都准备完毕好,然后这些线程才同时继续执行
。 实现代码如下,设想有三个跑步运动员,各自准备好后等待其他人,全部准备好后才开始跑:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
private static void runABCWhenAllReady() { int runner = 3; CyclicBarrier cyclicBarrier = new CyclicBarrier(runner); final Random random = new Random(); for (char runnerName='A'; runnerName <= 'C'; runnerName++) { final String rN = String.valueOf(runnerName); new Thread(new Runnable() { @Override public void run() { long prepareTime = random.nextInt(10000) + 100; System.out.println(rN + " is preparing for time: " + prepareTime); try { Thread.sleep(prepareTime); } catch (Exception e) { e.printStackTrace(); } try { System.out.println(rN + " is prepared, waiting for others"); cyclicBarrier.await(); // 当前运动员准备完毕,等待别人准备好 } catch (InterruptedException e) { e.printStackTrace(); } catch (BrokenBarrierException e) { e.printStackTrace(); } System.out.println(rN + " starts running"); // 所有运动员都准备好了,一起开始跑 } }).start(); } } |
打印的结果如下:
A is preparing for time: 4131
B is preparing for time: 6349
C is preparing for time: 8206A is prepared, waiting for others
B is prepared, waiting for others
C is prepared, waiting for others
C starts running
A starts running
B starts running
实际的开发中,我们经常要创建子线程来做一些耗时任务,然后把任务执行结果回传给主线程使用,这种情况在 Java 里要如何实现呢?
回顾线程的创建,我们一般会把 Runnable
对象传给 Thread 去执行。Runnable
定义如下:
1 2 3 |
public interface Runnable { public abstract void run(); } |
可以看到 run()
在执行完后不会返回任何结果。那如果希望返回结果呢?这里可以利用另一个类似的接口类 Callable
:
1 2 3 4 5 6 7 8 9 10 |
@FunctionalInterface public interface Callable |
可以看出 Callable
最大区别就是返回范型 V
结果。
那么下一个问题就是,如何把子线程的结果回传回来呢?在 Java 里,有一个类是配合 Callable 使用的:FutureTask
,不过注意,它获取结果的 get
方法会阻塞主线程。
举例,我们想让子线程去计算从1加到100,并把算出的结果返回到主线程。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
private static void doTaskWithResultInWorker() { Callable<Integer> callable = new Callable<Integer>() { @Override public Integer call() throws Exception { System.out.println("Task starts"); Thread.sleep(1000); int result = 0; for (int i=0; i<=100; i++) { result += i; } System.out.println("Task finished and return result"); return result; } }; FutureTask<Integer> futureTask = new FutureTask<>(callable); new Thread(futureTask).start(); try { System.out.println("Before futureTask.get()"); System.out.println("Result: " + futureTask.get()); System.out.println("After futureTask.get()"); } catch (InterruptedException e) { e.printStackTrace(); } catch (ExecutionException e) { e.printStackTrace(); } } |
打印结果如下:
Before futureTask.get()
Task starts
Task finished and return resultResult: 5050
After futureTask.get()
可以看到,主线程调用 futureTask.get()
方法时阻塞主线程;然后 Callable
内部开始执行,并返回运算结果;此时 futureTask.get()
得到结果,主线程恢复运行。
这里我们可以学到,通过 FutureTask
和 Callable
可以直接在主线程获得子线程的运算结果,只不过需要阻塞主线程。当然,如果不希望阻塞主线程,可以考虑利用 ExecutorService
,把 FutureTask
放到线程池去管理执行。
多线程是现代语言的共同特性,而线程间通信、线程同步、线程安全是很重要的话题。本文针对 Java 的线程间通信进行了大致的讲解,后续还会对线程同步、线程安全进行讲解。
谢谢。