浅谈公安大数据的建设

点击查看全文


ZDNet至顶网服务器频道 11月25日 新闻消息:

1公安大数据的建设需求

近年来随着信息化技术的不断发展,现有的公安警务数据中心无论是规模还是架构都很难适应在海量数据场景下的数据管理和分析,直接影响了公安形势预判和重大决策。因此,在现阶段建设新的能够匹配公安业务场景的大数据系统是公安部门的迫切需求。

新建设的公安大数据系统,将成为面向各警种的大数据管理和分析平台,通过对海量数据的收集、整理、归档、分析、预测,从复杂的数据中挖掘出各类数据背后所蕴含的、内在的、必然的因果关系,找到隐秘的规律,促使这些数据从量变到质变,实现对海量数据的深度应用、综合应用和高端应用。通过大数据的建设,使新系统能够向各警种提供集中资源、集中管理、集中监控和配套实施统一的大数据应用环境,保障在今后一个较长时期内很好地担负起对全局各警实战应用的支撑、服务、保障作用。

那么,公安需要一个什么样的大数据系统?

1.PB级数据存储管理:信息化建设在推进,数据规模随之飞速增长,为了满足大规模数据的存储和分析,大数据存储系统应支持单一系统扩展至10PB以上规模,以满足未来数据爆发的存储需要

2.多种数据类型与协议支持:公安数据形式多样,包含文档、图片、视频、栅格、矢量等,因此该系统需要能够支持结构化、半结构化、非结构化多种数据类型,提供NFS/CIFS/JDBC/ODBC等多种接口,以便业务对多种数据进行访问和操作;

3.高质量的数据整合:好的数据质量是数据分析挖掘等有效应用的基本条件,面对公安行业交互复杂而繁多的系统,势必需要将这些多源异构的数据进行抽取、转换及装载,实现数据的整合、消重,提供高质量的数据,在此基础上进行关联、建模,为实战业务提供可用的数据;

4.高效的数据分析能力:百亿条记录的检索、上千张表的碰撞、几百个小时的视频分析、大量的移动互联网和社交媒体数据处理等应用,无不对大数据系统的数据分析能力提出更高的要求;

5.可管理和开放性:可管理、开放化、标准化的大数据技术体系架构,不仅可以为公安带来更高的性价比、更出色的扩展性,更能为警务建设在大数据平台上开展新探索、新应用解除后顾之忧;

6.安全可靠,自主可控:公安系统中很多数据关系着国家安全和人民生命财产安全,因此,要求该系统具备非常高的可靠性,同时,为进一步加强数据安全性,避免数据泄露,最好选用具备完全自主知识产权的国产设备和系统。

2公安大数据的技术选型

大数据的实质是对数据的管理与开发利用,与当前以信息资源开发为核心的公安工作具有广泛的共通性,如何借助大数据技术推动公安工作的发展和变革?技术选型非常重要。在各个企业和组织纷纷助推下,大数据领域的相关技术呈现百花齐放局面,涵盖数据收集、存储、计算、挖掘、资源调度等,下面就以最核心的计算层和存储层两个维度介绍下有关技术路线和发展趋势。

数据处理:

简而言之,不管对何种应用,当数据量很大时就无法在一台服务器上解决计算问题,此时分布式计算优势就体现出来,而Hadoop MapReduce的重要创新便是当处理一个大数据集时会将其任务分解并在运行的多个节点中处理,这种批处理框架常用于离线的复杂的非结构化数据处理,如ETL、数据挖掘等场景;与Hadoop的使用硬盘来存储数据不同,Spark是基于内存的迭代计算框架,适用于需要多次操作特定数据集的应用场合;而Storm则是专门针对实时数据类型的流式计算分析框架,应用在低延迟的场景中,实现海量事件的实时分析、处理和决策。除此之外,为应对不断增长的海量结构化数据的存储和快速处理以及灵活的业务建模需求,数据库系统必将引入分布式架构、MPP处理技术。

数据存储:

上面提到了MapReduce将任务分发到多个服务器上处理大数据的能力。而对于分布式计算,每个服务器必须具备对数据的访问能力,这就是HDFS所起到的作用,HDFS有着高容错性、高吞吐量的特点,适合大数据集的应用。与此同时,业内也有许多其他类型的文件系统推出,不仅能解决了传统存储体系结构存在的难题,又能提高存储利用率和数据读写性能,可以替代HDFS作为Hadoop架构的底层文件系统/数据存储。

不同的技术思路各有偏重,由于公安业务种类繁多,大数据应用场景多样化,除了建立各类基础大数据资源库之外,还需要做到事前预测警务研判、事中实时情报分析及事后案事件分析,及可视化查询统计等,建议公安用户基于智能融合的大数据架构构建上层应用,积极引入大数据领域的先进技术,推动公安工作迈入大数据发展阶段。

3华为大数据解决方案服务公安



点击查看全文

浅谈公安大数据的建设_第1张图片

你可能感兴趣的:(大数据,阿里云)