pyspark 将rdd创建createDataFrame报错处理

TypeError: Can not infer schema for type: <class 'numpy.float64'>

因为数据中存在float类型数据,原始简易写法

owords_result = topWords.map(lambda p: Row(label_word=p[0], word_weight=p[1], word_flag=p[2]))
schemaPeople = spark.createDataFrame(owords_result)

报错了,错误

TypeError: Can not infer schema for type: <class 'numpy.float64'>
TypeError: not supported type: <class 'numpy.float64'>

需要将float类型显示指定才能存储成功,或者显示指定使用stringtype。
改写为

from pyspark.sql.types import StructField, StringType, FloatType, StructType

###createDataFrame # The schema is encoded in a string.
schemaString = "label_word word_weight word_flag"
fields = [StructField(field_name, StringType(), True) for field_name in schemaString.split(' ')]
schema = StructType(fields)
schemaPeople = spark.createDataFrame(owords_result, schema)

你可能感兴趣的:(自然语言处理)