- 正则化(Regularization)和正则表达式(Regular Expression)区别
Dontla
正则表达式
文章目录1.**正则化(Regularization)**2.**正则表达式(RegularExpression)**关键区别为什么名字相近?正则化(Regularization)和正则表达式(RegularExpression)不是同一个概念,它们是两个完全不同的术语,应用于不同的领域。1.正则化(Regularization)领域:机器学习/统计学。定义:正则化是一种用于防止模型过拟合(Ove
- 时间序列分析之AR、MA、ARMA、ARIMA详解(5)
白马负金羁
机器学习之术协整cointegrationARIMA时间序列分析
在时间序列分析中最常使用的一系列模型:AR、MR、ARMA,一直到ARIMA,都源于乔治·博克斯和格威利姆·詹金斯等人的一系列工作(他们的有关成果后汇集成该领域的权威经典著作【1】)。乔治·博克斯被认为是二十世纪的一代统计学大师,他有一句广为人知的名言:所有的模型都是错误的,但有一些是有用的(“Allmodelsarewrong,butsomeareuseful”)。为了让统计模型发挥作用,深入理
- 学习AI大模型用这十种方法,轻松入门
大模型玩家
学习人工智能transformer深度学习langchainagi大模型
AI大模型学习在当前技术环境下,AI大模型学习不仅要求研究者具备深厚的数学基础和编程能力,还需要对特定领域的业务场景有深入的了解。通过不断优化模型结构和算法,AI大模型学习能够不断提升模型的准确性和效率,为人类生活和工作带来更多便利。系统化理论知识建构:对于AI大模型的学习,首要任务是对基础理论进行全面而深入的理解。这意味着需要投入大量的时间去研读经典的机器学习和深度学习教材,包括但不限于《统计学
- 用大模型学大模型03-数学基础 概率论
wyg_031113
概率论人工智能
https://metaso.cn/s/Jp0OU9w提示词:我正在学习深度学习相关的数学知识,学到了概率论与统计学部分,给我一个入门级的完整教程和实例。好的,我现在需要回答用户关于深度学习所需的概率论与统计学入门教程和实例的问题。用户希望得到一个完整的教程和实例,所以我要从我搜索到的资料中整理出相关的知识点和学习路径,并结合实例说明。首先,查看证据中的相关内容。提到花书学习笔记,涵盖了概率论、信
- 一周掌握 Java 入门知识
bavDHAUO
java
学习目标:提示:这里可以添加学习目标例如:一周掌握Java入门知识学习内容:提示:这里可以添加要学的内容例如:搭建Java开发环境掌握Java基本语法掌握条件语句掌握循环语句学习时间:提示:这里可以添加计划学习的时间例如:周一至周五晚上7点—晚上9点周六上午9点-上午11点周日下午3点-下午6点学习产出:提示:这里统计学习计划的总量例如:技术笔记2遍CSDN技术博客3篇习的vlog视频1个
- 一周掌握 Java 入门知识
scaFHIO
java
学习目标:提示:这里可以添加学习目标例如:一周掌握Java入门知识学习内容:提示:这里可以添加要学的内容例如:搭建Java开发环境掌握Java基本语法掌握条件语句掌握循环语句学习时间:提示:这里可以添加计划学习的时间例如:周一至周五晚上7点—晚上9点周六上午9点-上午11点周日下午3点-下午6点学习产出:提示:这里统计学习计划的总量例如:技术笔记2遍CSDN技术博客3篇习的vlog视频1个
- 一周掌握 Java 入门知识
eahba
java
学习目标:提示:这里可以添加学习目标例如:一周掌握Java入门知识学习内容:提示:这里可以添加要学的内容例如:搭建Java开发环境掌握Java基本语法掌握条件语句掌握循环语句学习时间:提示:这里可以添加计划学习的时间例如:周一至周五晚上7点—晚上9点周六上午9点-上午11点周日下午3点-下午6点学习产出:提示:这里统计学习计划的总量例如:技术笔记2遍CSDN技术博客3篇习的vlog视频1个
- 书籍-《机器学习数学基础》
机器学习深度学习数学
书籍:MathematicsforMachineLearning作者:MarcPeterDeisenroth,A.AldoFaisal,ChengSoonOng出版:CambridgeUniversityPress编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《机器学习数学基础》01书籍介绍理解机器学习所需的基本数学工具包括线性代数、解析几何、矩阵分解、向量微积分、最优化、概率论和统计学。这
- R 语言 必备 十大资源
后端
引言R是进行统计计算和数据分析的热门编程语言之一,广泛应用于数据科学家、研究者和统计学家之间,用于处理大数据、执行复杂分析和结果可视化。如果你是R的新手或希望提升你的R技能,这里有一些核心资源可以助你一臂之力,无论是从基础学起还是提高现有水平,包括官方站点、知名学府和互动式学习平台。1.R项目官网(r-project.org)R项目的官方网站是开启R学习之旅的首选,它提供免费的R软件、文档、教程和
- Python 量化
ONE_PUNCH_Ge
python开发语言
Python量化是指利用Python编程语言以及相关的库和工具来进行金融市场数据分析、策略开发和交易执行的过程。Python由于其简洁、易学、强大的生态系统和丰富的金融库而成为量化交易的首选编程语言之一。量化交易在金融领域得到广泛应用,它允许交易者通过系统性的方法来制定和执行交易策略,提高交易效率和决策的科学性。量化主要是通过数学和统计学的方法,利用计算机技术对金融市场进行量化分析,从而制定和执行
- Python statistics 模块
ONE_PUNCH_Ge
python
在数据分析和科学计算中,统计学是一个非常重要的工具。Python提供了一个内置的statistics模块,专门用于处理基本的统计计算。本文将详细介绍statistics模块的功能和使用方法,帮助初学者快速掌握如何使用这个模块进行基本的统计分析。statistics模块提供了许多常用的统计函数,如均值、中位数、方差、标准差等。要使用statistics函数必须先导入:importstatistics
- statistics --- 数学统计函数
知识的宝藏
python
3.4新版功能.源代码:Lib/statistics.py该模块提供了用于计算数字(Real-valued)数据的数理统计量的函数。此模块并不是诸如NumPy,SciPy等第三方库或者诸如Minitab,SAS和Matlab等针对专业统计学家的专有全功能统计软件包的竞品。此模块针对图形和科学计算器的水平。除非明确注释,这些函数支持int,float,Decimal和Fraction。当前不支持同其
- 【SQL】学习笔记-4
Nicolas23
SQLsql
1、ABtestA/B测试是一种统计学方法,用于比较两个或多个版本的效果,以确定哪个版本在特定指标上表现更佳。以下是进行A/B测试的一些最佳实践:明确目标:在开始之前,你需要确定实验的目的和预期结果。比如提高转化率、增加用户参与度或提升用户体验。定义假设:基于你的目标,提出可测试的假设。例如,如果你认为改变按钮颜色可以提高点击率,那么你的假设就是“绿色按钮比红色按钮有更高的点击率”。选择关键指标:
- AI基础 -- AI学习路径图
sz66cm
人工智能学习
人工智能从数学到大语言模型构建教程第一部分:AI基础与数学准备1.绪论:人工智能的过去、现在与未来人工智能的定义与发展简史从符号主义到统计学习、再到深度学习与大模型的变迁本书内容概览与学习路径指引2.线性代数与矩阵运算向量与矩阵的基本概念矩阵分解(特征值分解、奇异值分解)张量运算简介(为后续深度学习做准备)在机器学习和深度学习中的应用示例3.概率论与统计基础随机变量、分布与期望方差贝叶斯理论与最大
- 第八届大数据与应用统计国际学术研讨会(ISBDAS 2025)
禁默
学术会议大数据
重要信息官网:www.is-bdas.org时间:2025年2月28-3月2日地点:中国·广州主办单位:广东省高等教育学会人工智能与高等教育研究分会协办单位:北京师范大学人工智能与未来网络研究院、人工智能与大数据科研基地简介第八届大数据与应用统计(ISBDAS2025)定于2025年2月28-3月2日在中国广州举行。旨在为从事“大数据”与“应用统计学”研究的专家学者、工程技术人员、技术研发人员提供
- 使用线性回归模型逼近目标模型 | PyTorch 深度学习实战
Chatopera 研发团队
机器学习深度学习线性回归pytorch
前一篇文章,计算图ComputeGraph和自动求导Autograd|PyTorch深度学习实战本系列文章GitHubRepo:https://github.com/hailiang-wang/pytorch-get-started使用线性回归模型逼近目标模型什么是回归什么是线性回归使用PyTorch实现线性回归模型代码执行结果什么是回归在统计学中,回归分析(regressionanalysis)
- 自然语言处理的统计学原理
数行天下
人工智能语言模型自然语言处理人工智能
大家好,我是数行天下。语言承载着人类思维和文化,扮演着学习、交流和文化传承的重要角色。人脑对语言的处理能力是智慧的最高形式,也是人工智能旨在实现的皇冠。自然语言处理在人工智能中的重要性体现在其对人机交互、信息提取、知识表示、机器翻译等多个方面的影响。随着大语言模型技术的进步,NLP将继续推动AI的发展,使机器更好地理解和生成自然语言,更好地服务于人类。然而自然语言充满了不确定性和模糊性,不同场景的
- 一文掌握什么是时间序列?时间序列研究的核心任务?目前最强大的时序分析与建模工具和项目?
幸运 lucky
人工智能学习之路时间序列核心任务时序分析与建模工具和项目SOTA
CSDN叶庭云:https://yetingyun.blog.csdn.net/什么是时间序列?时间序列是一系列按照时间顺序排列的数据点,这些数据点通常是随时间连续变化的测量值。时间序列分析是统计学中专门用于解析时间顺序数据的一套技术,旨在识别数据中的模式、趋势、季节性波动及其他潜在的周期性特征。然而,当前,机器学习与深度学习方法在这一领域的应用正日益受到青睐。时间序列数据可以来源于各种领域,如经
- 多元线性回归模型:理论、应用与数学建模实例
小柒笔记
数学建模线性回归算法
引言多元线性回归模型是数学建模中的一种重要工具,它用于分析两个或两个以上自变量与一个因变量之间的关系。在许多实际问题中,如经济学、生物统计学、环境科学和社会科学等领域,多元线性回归模型都发挥着关键作用。本文将介绍多元线性回归模型的基本概念、数学表达式及其在数学建模中的应用。一、多元线性回归模型的基本概念1.1定义多元线性回归模型是指包含一个因变量和多个自变量的线性回归模型。数学上,它可以表示为:Y
- 一切皆是映射:神经网络在图像识别中的应用案例
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
一切皆是映射:神经网络在图像识别中的应用案例关键词:神经网络、图像识别、深度学习、卷积神经网络、映射、模式识别1.背景介绍1.1问题的由来图像识别问题的研究源于人类对于智能机器的渴望。早在20世纪50年代,人工智能的先驱们就开始探索如何让计算机具备类似人类的视觉感知能力。从最初的简单模式匹配,到后来的统计学习方法,再到如今的深度学习,图像识别技术经历了几代演变。这一演变过程反映了人工智能技术的快速
- 股票量化交易进阶 - 使用回测框架backtrader
NisyPhilosophy
python开发语言
随着社会的发展和科技的进步,股票量化交易越来越受到投资者的关注和追捧。量化交易是一种使用数学和统计学方法来分析市场数据、制定投资策略并执行交易的方法。而回测框架是量化交易中不可或缺的工具之一,它可以帮助我们模拟历史行情并评估我们的投资策略的表现。在本文中,我们将介绍一种常用的回测框架backtrader,并展示如何使用它来开发和测试自己的股票量化交易策略。backtrader是一个功能强大且灵活的
- 2025最新最全AI大模型系统学习路线
大模型老炮
人工智能学习大模型知识图谱大模型入门AI大模型大模型学习
随着技术的进步,大模型如OpenAI的GPT-4和Sora、Google的BERT和Gemini等已经展现出了惊人的能力-从理解和生成自然语言到创造逼真的图像及视频。所以掌握大模型的知识和技能变得越来越重要。下面是学习大模型的一些建议,供大家参考。必备基础知识**数学基础:**深入理解线性代数、概率论和统计学、微积分等基础数学知识。**编程基础:**熟练掌握至少一种编程语言,推荐Python,因为
- 22章2节:如何在 R Markdown 和 R Notebook 中创建使用
DAT|R科学
用R探索医药数据科学r语言开发语言
RMarkdown是一种广泛使用的工具,可以帮助数据科学家、统计学家和研究人员创建动态和交互式的报告。它结合了R语言的强大数据处理和分析能力,以及Markdown的简洁易用的文本格式,使得创建专业和美观的报告变得更加简单和高效。同时,RNotebook是一种交互式文档格式,它将叙述性文本、数据可视化以及其他多媒体组件与用R语言编写的代码结合在一起。RNotebook使用户能够创建和分享包含数据分析
- 《深入浅出HTTPS》读书笔记(5):随机数
earthzhang2021
https网络协议http
密码学中随机数的用途非常大,其他密码学算法内部都会用到随机数。1)效率在软件或者密码学应用中需要大量的随机数,必须在很短的时间内生成随机数。2)随机性生成的随机数只要不存在统计学偏差,那么这个随机数就具备随机性(randomness)。3)不可预测性密码学中的随机数必须具备不可预测性,否则就会存在安全问题,当然非密码学应用使用具备随机性的随机数就足够了。4)不可重现性所谓不可重现性(unrepea
- 超实用的Python机器学习教程 - 基于scikit - learn库
AI_DL_CODE
人工智能python机器学习人工智能
一、机器学习简介机器学习的定义与概念机器学习是一门多领域交叉学科,它涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。简单来说,机器学习是让计算机从数据中学习规律并进行预测或决策的技术。它旨在构建能够自动从数据中学习模式并进行改进的算法,而无需被明确编程来执行特定任务。例如,我们可以让机器学习算法通过分析大量的历史天气数据来预测未来的天气情况,或者通过分析用户的购物历史来推荐可能感兴趣
- 相关性分析——点二列相关分析
蓝皮怪
知识分享机器学习数据分析
点二列相关分析(Point-BiserialCorrelationAnalysis)点二列相关分析是一种用于衡量一个二元变量(通常取值为0和1)与一个连续变量之间相关性的统计方法。它常用于教育学、心理学和社会科学等领域,以评估二元变量对连续变量的影响。一、起源点二列相关系数是皮尔逊积矩相关系数的特例,由卡尔·皮尔逊(KarlPearson)提出。皮尔逊在研究统计学理论时,发现传统的相关系数方法无法
- 数据分析新技能:如何进行Mann-Whitney U检验
蓝皮怪
知识分享数据分析
Mann-WhitneyU检验Mann-WhitneyU检验是一种非参数统计方法,用于比较两个独立样本的分布。它特别适用于数据不满足正态分布或存在异常值的情况,是t检验的非参数替代方法。一、起源Mann-WhitneyU检验由美国统计学家亨利·曼恩(HenryMann)和德怀特·惠特尼(DonaldWhitney)于1947年提出。它是Wilcoxon秩和检验的独立样本版本,旨在提供一种不依赖于正
- 多元随机分布的协方差矩阵的计算(python示例)
读思辨
Python数学矩阵python线性代数
协方差矩阵是统计学中描述两个或多个随机变量之间线性相关程度的一个重要工具。对于一个kkk维随机向量X=(X1,X2,...,Xk)X=(X_1,X_2,...,X_k)X=(X1,X2,...,Xk),其协方差矩阵是一个k×kk\timeskk×k的矩阵,其中每个元素σij\sigma_{ij}σij是随机变量XiX_iXi和XjX_jXj的协方差。协方差的计算公式为:σij=Cov(Xi,Xj)
- PTA:结构 按等级统计学生成绩
悦悦子a啊
C语言PTA习题算法
本题要求实现一个根据学生成绩设置其等级,并统计不及格人数的简单函数。函数接口定义:intset_grade(structstudent*p,intn);其中p是指向学生信息的结构体数组的指针,该结构体的定义为:structstudent{intnum;charname[20];intscore;chargrade;};n是数组元素个数。学号num、姓名name和成绩score均是已经存储好的。se
- 数据挖掘的常用算法
北柠陌寒0207
笔记
在大数据时代,数据挖掘是最关键的工作。大数据的挖掘是从海量、不完全的、有噪声的、模糊的、随机的大型数据库中发现隐含在其中有价值的、潜在有用的信息和知识的过程,也是一种决策支持过程。其主要基于人工智能,机器学习,模式学习,统计学等。通过对大数据高度自动化地分析,做出归纳性的推理,从中挖掘出潜在的模式,可以帮助企业、商家、用户调整市场政策、减少风险、理性面对市场,并做出正确的决策。目前,在很多领域尤其
- HttpClient 4.3与4.3版本以下版本比较
spjich
javahttpclient
网上利用java发送http请求的代码很多,一搜一大把,有的利用的是java.net.*下的HttpURLConnection,有的用httpclient,而且发送的代码也分门别类。今天我们主要来说的是利用httpclient发送请求。
httpclient又可分为
httpclient3.x
httpclient4.x到httpclient4.3以下
httpclient4.3
- Essential Studio Enterprise Edition 2015 v1新功能体验
Axiba
.net
概述:Essential Studio已全线升级至2015 v1版本了!新版本为JavaScript和ASP.NET MVC添加了新的文件资源管理器控件,还有其他一些控件功能升级,精彩不容错过,让我们一起来看看吧!
syncfusion公司是世界领先的Windows开发组件提供商,该公司正式对外发布Essential Studio Enterprise Edition 2015 v1版本。新版本
- [宇宙与天文]微波背景辐射值与地球温度
comsci
背景
宇宙这个庞大,无边无际的空间是否存在某种确定的,变化的温度呢?
如果宇宙微波背景辐射值是表示宇宙空间温度的参数之一,那么测量这些数值,并观测周围的恒星能量输出值,我们是否获得地球的长期气候变化的情况呢?
&nbs
- lvs-server
男人50
server
#!/bin/bash
#
# LVS script for VS/DR
#
#./etc/rc.d/init.d/functions
#
VIP=10.10.6.252
RIP1=10.10.6.101
RIP2=10.10.6.13
PORT=80
case $1 in
start)
/sbin/ifconfig eth2:0 $VIP broadca
- java的WebCollector爬虫框架
oloz
爬虫
WebCollector主页:
https://github.com/CrawlScript/WebCollector
下载:webcollector-版本号-bin.zip将解压后文件夹中的所有jar包添加到工程既可。
接下来看demo
package org.spider.myspider;
import cn.edu.hfut.dmic.webcollector.cra
- jQuery append 与 after 的区别
小猪猪08
1、after函数
定义和用法:
after() 方法在被选元素后插入指定的内容。
语法:
$(selector).after(content)
实例:
<html>
<head>
<script type="text/javascript" src="/jquery/jquery.js"></scr
- mysql知识充电
香水浓
mysql
索引
索引是在存储引擎中实现的,因此每种存储引擎的索引都不一定完全相同,并且每种存储引擎也不一定支持所有索引类型。
根据存储引擎定义每个表的最大索引数和最大索引长度。所有存储引擎支持每个表至少16个索引,总索引长度至少为256字节。
大多数存储引擎有更高的限制。MYSQL中索引的存储类型有两种:BTREE和HASH,具体和表的存储引擎相关;
MYISAM和InnoDB存储引擎
- 我的架构经验系列文章索引
agevs
架构
下面是一些个人架构上的总结,本来想只在公司内部进行共享的,因此内容写的口语化一点,也没什么图示,所有内容没有查任何资料是脑子里面的东西吐出来的因此可能会不准确不全,希望抛砖引玉,大家互相讨论。
要注意,我这些文章是一个总体的架构经验不针对具体的语言和平台,因此也不一定是适用所有的语言和平台的。
(内容是前几天写的,现附上索引)
前端架构 http://www.
- Android so lib库远程http下载和动态注册
aijuans
andorid
一、背景
在开发Android应用程序的实现,有时候需要引入第三方so lib库,但第三方so库比较大,例如开源第三方播放组件ffmpeg库, 如果直接打包的apk包里面, 整个应用程序会大很多.经过查阅资料和实验,发现通过远程下载so文件,然后再动态注册so文件时可行的。主要需要解决下载so文件存放位置以及文件读写权限问题。
二、主要
- linux中svn配置出错 conf/svnserve.conf:12: Option expected 解决方法
baalwolf
option
在客户端访问subversion版本库时出现这个错误:
svnserve.conf:12: Option expected
为什么会出现这个错误呢,就是因为subversion读取配置文件svnserve.conf时,无法识别有前置空格的配置文件,如### This file controls the configuration of the svnserve daemon, if you##
- MongoDB的连接池和连接管理
BigCat2013
mongodb
在关系型数据库中,我们总是需要关闭使用的数据库连接,不然大量的创建连接会导致资源的浪费甚至于数据库宕机。这篇文章主要想解释一下mongoDB的连接池以及连接管理机制,如果正对此有疑惑的朋友可以看一下。
通常我们习惯于new 一个connection并且通常在finally语句中调用connection的close()方法将其关闭。正巧,mongoDB中当我们new一个Mongo的时候,会发现它也
- AngularJS使用Socket.IO
bijian1013
JavaScriptAngularJSSocket.IO
目前,web应用普遍被要求是实时web应用,即服务端的数据更新之后,应用能立即更新。以前使用的技术(例如polling)存在一些局限性,而且有时我们需要在客户端打开一个socket,然后进行通信。
Socket.IO(http://socket.io/)是一个非常优秀的库,它可以帮你实
- [Maven学习笔记四]Maven依赖特性
bit1129
maven
三个模块
为了说明问题,以用户登陆小web应用为例。通常一个web应用分为三个模块,模型和数据持久化层user-core, 业务逻辑层user-service以及web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和user-service
依赖作用范围
Maven的dependency定义
- 【Akka一】Akka入门
bit1129
akka
什么是Akka
Message-Driven Runtime is the Foundation to Reactive Applications
In Akka, your business logic is driven through message-based communication patterns that are independent of physical locatio
- zabbix_api之perl语言写法
ronin47
zabbix_api之perl
zabbix_api网上比较多的写法是python或curl。上次我用java--http://bossr.iteye.com/blog/2195679,这次用perl。for example: #!/usr/bin/perl
use 5.010 ;
use strict ;
use warnings ;
use JSON :: RPC :: Client ;
use
- 比优衣库跟牛掰的视频流出了,兄弟连Linux运维工程师课堂实录,更加刺激,更加实在!
brotherlamp
linux运维工程师linux运维工程师教程linux运维工程师视频linux运维工程师资料linux运维工程师自学
比优衣库跟牛掰的视频流出了,兄弟连Linux运维工程师课堂实录,更加刺激,更加实在!
-----------------------------------------------------
兄弟连Linux运维工程师课堂实录-计算机基础-1-课程体系介绍1
链接:http://pan.baidu.com/s/1i3GQtGL 密码:bl65
兄弟连Lin
- bitmap求哈密顿距离-给定N(1<=N<=100000)个五维的点A(x1,x2,x3,x4,x5),求两个点X(x1,x2,x3,x4,x5)和Y(
bylijinnan
java
import java.util.Random;
/**
* 题目:
* 给定N(1<=N<=100000)个五维的点A(x1,x2,x3,x4,x5),求两个点X(x1,x2,x3,x4,x5)和Y(y1,y2,y3,y4,y5),
* 使得他们的哈密顿距离(d=|x1-y1| + |x2-y2| + |x3-y3| + |x4-y4| + |x5-y5|)最大
- map的三种遍历方法
chicony
map
package com.test;
import java.util.Collection;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
public class TestMap {
public static v
- Linux安装mysql的一些坑
chenchao051
linux
1、mysql不建议在root用户下运行
2、出现服务启动不了,111错误,注意要用chown来赋予权限, 我在root用户下装的mysql,我就把usr/share/mysql/mysql.server复制到/etc/init.d/mysqld, (同时把my-huge.cnf复制/etc/my.cnf)
chown -R cc /etc/init.d/mysql
- Sublime Text 3 配置
daizj
配置Sublime Text
Sublime Text 3 配置解释(默认){// 设置主题文件“color_scheme”: “Packages/Color Scheme – Default/Monokai.tmTheme”,// 设置字体和大小“font_face”: “Consolas”,“font_size”: 12,// 字体选项:no_bold不显示粗体字,no_italic不显示斜体字,no_antialias和
- MySQL server has gone away 问题的解决方法
dcj3sjt126com
SQL Server
MySQL server has gone away 问题解决方法,需要的朋友可以参考下。
应用程序(比如PHP)长时间的执行批量的MYSQL语句。执行一个SQL,但SQL语句过大或者语句中含有BLOB或者longblob字段。比如,图片数据的处理。都容易引起MySQL server has gone away。 今天遇到类似的情景,MySQL只是冷冷的说:MySQL server h
- javascript/dom:固定居中效果
dcj3sjt126com
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&
- 使用 Spring 2.5 注释驱动的 IoC 功能
e200702084
springbean配置管理IOCOffice
使用 Spring 2.5 注释驱动的 IoC 功能
developerWorks
文档选项
将打印机的版面设置成横向打印模式
打印本页
将此页作为电子邮件发送
将此页作为电子邮件发送
级别: 初级
陈 雄华 (
[email protected]), 技术总监, 宝宝淘网络科技有限公司
2008 年 2 月 28 日
&nb
- MongoDB常用操作命令
geeksun
mongodb
1. 基本操作
db.AddUser(username,password) 添加用户
db.auth(usrename,password) 设置数据库连接验证
db.cloneDataBase(fromhost)
- php写守护进程(Daemon)
hongtoushizi
PHP
转载自: http://blog.csdn.net/tengzhaorong/article/details/9764655
守护进程(Daemon)是运行在后台的一种特殊进程。它独立于控制终端并且周期性地执行某种任务或等待处理某些发生的事件。守护进程是一种很有用的进程。php也可以实现守护进程的功能。
1、基本概念
&nbs
- spring整合mybatis,关于注入Dao对象出错问题
jonsvien
DAOspringbeanmybatisprototype
今天在公司测试功能时发现一问题:
先进行代码说明:
1,controller配置了Scope="prototype"(表明每一次请求都是原子型)
@resource/@autowired service对象都可以(两种注解都可以)。
2,service 配置了Scope="prototype"(表明每一次请求都是原子型)
- 对象关系行为模式之标识映射
home198979
PHP架构企业应用对象关系标识映射
HELLO!架构
一、概念
identity Map:通过在映射中保存每个已经加载的对象,确保每个对象只加载一次,当要访问对象的时候,通过映射来查找它们。其实在数据源架构模式之数据映射器代码中有提及到标识映射,Mapper类的getFromMap方法就是实现标识映射的实现。
二、为什么要使用标识映射?
在数据源架构模式之数据映射器中
//c
- Linux下hosts文件详解
pda158
linux
1、主机名: 无论在局域网还是INTERNET上,每台主机都有一个IP地址,是为了区分此台主机和彼台主机,也就是说IP地址就是主机的门牌号。 公网:IP地址不方便记忆,所以又有了域名。域名只是在公网(INtERNET)中存在,每个域名都对应一个IP地址,但一个IP地址可有对应多个域名。 局域网:每台机器都有一个主机名,用于主机与主机之间的便于区分,就可以为每台机器设置主机
- nginx配置文件粗解
spjich
javanginx
#运行用户#user nobody;#启动进程,通常设置成和cpu的数量相等worker_processes 2;#全局错误日志及PID文件#error_log logs/error.log;#error_log logs/error.log notice;#error_log logs/error.log inf
- 数学函数
w54653520
java
public
class
S {
// 传入两个整数,进行比较,返回两个数中的最大值的方法。
public
int
get(
int
num1,
int
nu