大数据学习根据应用目标,主要可以划分为哪三个阶段?

1)大数据基础设施建设阶段:这个阶段的重点是把大数据存起来,管起来,能用起来,同时要考虑大数据平台和原有业务系统的互通联合问题。一句话,做好全局数据集成解决数据孤岛问题!要完成大数据基础设施系统建设开发,需要明确数据采集、存储和分析各层核心组件的选型和使用,搭建稳定的大数据集群,或选择私有云方案的服务集群,与生产系统并线运行,使待分析的历史数据和实时数据得以采集并源源不断流入大数据系统。这个阶段的关键技术学习包括采集爬虫、数据接口、分布式存储、数据预处理ETL、数据集成、数据库和数据仓库管理、云计算和资源调度管理等等内容。

2)大数据描述性分析阶段:此阶段主要定位于离线或在线对数据进行基本描述统计和探索式可视化分析,对管理起来的大数据能进行海量存储条件下的交互式查询、汇总、统计和可视化,如果建设了BI系统的,还需整合传统BI技术进行OLAP、KPI、Report、Chart、Dashboard等分析和初步的描述型数据挖掘分析。这个基础分析阶段是对数据集成质量的检验,也是对海量数据条件下的分布式存储管理技术应用稳定性的测试,同时要能替代或集成传统BI的各类报表。这个阶段的关键技术学习包括可视化、探索式交互式分析、多维分析、各类基本报表和图表的查询设计等等。

3)大数据高级预测分析和生产部署阶段:在初步描述分析结果合理,符合预期目标,数据分布式管理和描述型分析稳定成熟的条件下,可结合进一步智能化分析需求,采用如深度学习等适用海量数据处理的机器学习模型,进行高级预测性挖掘分析。并通过逐步迭代优化挖掘模型和数据质量,形成稳定可靠和性能可扩展的智能预测模型,并在企业相关业务服务中进行分析结果的决策支持,进行验证、部署、评估和反馈。这个阶段的关键技术包括机器学习建模、决策支持、可视化、模型部署和运维等。

在上述几个阶段的技术学习过程中,需要注意几个关键问题:一是重视可视化和业务决策,大数据分析结果是为决策服务,而大数据决策的表现形式,可视化技术的优劣起决定性作用;二是问问自己,Hadoop、Spark等是必须的吗?要从整个大数据技术栈来考虑技术选型和技术路线的确定;三是建模问题处于核心地位,模型的选择和评估至关重要,在课堂和实验室中,多数模型的评估是静态的,少有考虑其运行速度、实时性及增量处理,因此多使用复杂的臃肿模型,其特征变量往往及其复杂。
人工智能、大数据、云计算和物联网的未来发展值得重视,均为前沿产业,多智时代专注于人工智能和大数据的入门和科谱,在此为你推荐几篇优质好文:
请问大数据需要学什么?
http://www.duozhishidai.com/article-15279-1.html
自己规划的大数据学习路线
http://www.duozhishidai.com/article-14674-1.html
大数据技术怎么学习,在学习大数据之前,需要具备什么基础?
http://www.duozhishidai.com/article-12916-1.html


多智时代-人工智能大数据学习入门网站|人工智能、大数据、物联网云计算的学习交流网站

大数据学习根据应用目标,主要可以划分为哪三个阶段?_第1张图片

你可能感兴趣的:(大数据)