【贪心】喷水装置

【题目描述】

有一块草坪,横向长w,纵向长为h,在它的橫向中心线上不同位置处装有n(n<=100000)个点状的喷水装置,每个喷水装置i喷水的效果是让以它为中心半径为Ri的圆都被润湿。请在给出的喷水装置中选择尽量少的喷水装置,把整个草坪全部润湿。

【输入格式】

第一行输入一个正整数T表示共有T次测试数据。
每一组测试数据的第一行有三个整数n,w,h,n表示共有n个喷水装置,w表示草坪的横向长度,h表示草坪的纵向长度。
随后的n行,都有两个整数xi和ri,xi表示第i个喷水装置的的横坐标(草坪的最左边为0),ri表示该喷水装置能覆盖的圆的半径。

【输出格式】

每组测试数据输出一个正整数,表示共需要多少个喷水装置,每个输出单独占一行。
如果不存在一种能够把整个草坪湿润的方案,请输出0。


如图,我们知道这是一个圆形面积的覆盖

【贪心】喷水装置_第1张图片

 乍一看此题我们似乎无从下手,因为每一个圆会有一部分延伸

但是我们仔细思考就会发现,我们只需要考虑这个点为中心的圆与矩形上下两边的交点就可以了,因为我们发现,如果两个圆之间能够覆盖中间的所有面积,那他们与上下两边的交点所构成的线段一定是重合的,因为这些点全部在中线上,所以上下的交点是对称的,我们便可以将其转化为一条条线段进行覆盖,问题就被转化为了一个区间最少线段覆盖的经典模型

ps:转化线段时采用勾股定理,以及需要使用double

#include
#include
#include
#include
#include
#include
#include
using namespace std;
int n,w,h,t,ans;
double now=0;
struct que
{
	double l,r;
	int x,rs;
}a[100005];
bool cmp(que a,que b)
{
	return a.l=w) break;
		}
		if(now>=w) printf("%d\n",ans);
		else printf("0\n");
	}
}

 

你可能感兴趣的:(贪心)