BSGS模板

BSGS即baby step, giant step,用于求解形如 a x ≡ b ( m o d p ) a^{x} ≡ b \pmod{p} axb(modp)的方程。
具体做法:设 x = i ∗ t − j x = i * t - j x=itj,则方程变为 a i ∗ t ≡ b ∗ a j ( m o d p ) a^{i * t} ≡ b * a ^ {j}\pmod{p} aitbaj(modp)。先把每个 b ∗ a j ( m o d p ) b * a ^ {j}\pmod{p} baj(modp)插入Hash表,再枚举i * t, 查找在Hash表中是否有对应取值。时间复杂度 O ( n ) O(\sqrt{n}) O(n ) ( t = p , j ∈ [ 0 , t − 1 ] , i ∈ [ 1 , t ] ) (t = \sqrt{p},j\in[0, t - 1], i\in[1, t]) (t=p ,j[0,t1],i[1,t])

#include
#include
#include
typedef long long LL;

struct MAP{
	#define key (H % MOD)
	static const LL MOD = 999983, MAXN = 50005;
	int fir[MOD + 5], nxt[MAXN], num[MAXN], cnt; LL val[MAXN];
	void clear(){memset(fir, -1, sizeof(fir)); cnt = 0;}
	void Insert(int H, int t){
		for(int i = fir[key]; i != -1; i = nxt[i])
			if(val[i] == H){num[i] = t; return;}
		num[cnt] = t, val[cnt] = H, nxt[cnt] = fir[key], fir[key] = cnt++;
	}
	int found(int H){
		for(int i = fir[key]; i != -1; i = nxt[i])
			if(val[i] == H) return num[i];
		return -1;
	}
	#undef key
}Hash;

int Pow(int a, int b, int p){
	int ans = 1;
	while(b){
		if(b & 1) ans = 1ll * ans * a % p;
		b >>= 1, a = 1ll * a * a % p;
	}
	return ans;
}

int BSGS(int a, int b, int p){ //a^x = b(mod p)求其最小非负整数解
	a %= p, b %= p; Hash.clear();
	int m = ceil(sqrt(p));
	for(int j = 0; j < m; j++){
		int t = (long long)b * Pow(a, j, p) % p;
		Hash.Insert(t, j);
	}
	a = Pow(a, m, p);
	if(!a) return !b ? 1 : -1;
	for(int i = 1; i <= m; i++){
		LL P = Pow(a, i, p), k = Hash.found(P);
		if(k != -1) return i * m - k;
	}
	return -1;
}

int main(){
	LL p, b, n;
	scanf("%lld%lld%lld", &p, &b, &n);
	int ans = BSGS(b, n, p);
	if(ans == -1) printf("no solution");
	else printf("%d", ans);
	return 0;
}

你可能感兴趣的:(模板,数论,BSGS)