数字图像处理,自适应中值滤波的C++实现

自适应中值滤波的原理

     自适应中值滤波的思想是根据噪声密度改变滤波窗口的大小,同时对噪声点和信号点采取不同的处理方法。对噪声点进行中值滤波,对信号点保持其灰度值不变。

       设为fij为点(i,j)的灰度值,Sij为当前工作窗口,fmin,fmax和fmed分别为Sij中的灰度最小值、灰度最大值和灰度中值,令maxize为预设的允许最大窗口。自适应中值滤波的步骤如下:

1)若 fmin< fmed ,则转至第2步;否则增大窗口的尺寸。若的尺寸小于的尺寸,则重复第1步;否则输出。

2)若 fmin< fij ,则输出fij;否则输出fmed

可以看出,算法中噪声的检测和认定时以 fmin fmax为基准的,如果 fmin< fmed ,表明fmed 不是噪声,

接着根据fmin< fij 判断fij 是否为噪声,当fmedfij 都不是脉冲噪声时,优先输出fij

引入自适应中值滤波算法主要有3 个目的: 

一是去除脉冲噪声;

二是平滑其他非脉冲噪声;

三是减少诸如物体边界细化或粗化等失真。

自适应中值滤波的流程图如下图所示。



参考代码:

/////////////自适应中值滤波/////////////////////////////////
int adp_media_filter(unsigned char* inbuffer,int width,int height,int maxwinsize,unsigned char* outbuffer)
{
	int pos = (maxwinsize - 1) / 2;
	memcpy(outbuffer,inbuffer,width*height);       
	for (int m = pos; m < height - pos; m++)//当前中心位置(m,n)
	{
		for (int n = pos; n < width - pos; n++)
		{
			int curwinsize = 3;     //设置初始滤波窗口大小
			while (curwinsize <= maxwinsize)
			{
				int curpos = (curwinsize - 1) / 2;
				int winpos = 0;
				int lens = curwinsize*curwinsize;
				int* windows = new int[lens];
				for (int i = -curpos; i < curpos + 1; i++)
					for (int j = -curpos; j < curpos + 1; j++)
						windows[winpos++] = inbuffer[(m + i)*width + n + j];
				
				sort(windows, lens);
				int fmin = windows[0];
				int fmax = windows[lens - 1];
				int fmed = windows[(lens - 1) / 2];
				int A1 = fmed - fmin;
				int A2 = fmed - fmax;
				if (A1 > 0 && A2 < 0)//第一层噪声检测,fmed是不是噪声
				{
					//满足fmin< fmed < fmax,表明fmed不是噪声
					int B1 = inbuffer[m*width + n] - fmin;//当前窗口中心值inbuffer[m*width + n]
					int B2 = inbuffer[m*width + n] - fmax;
					//满足fmin< fmn < fmax,表明fmn不是噪声
					if (B1 > 0 && B2 < 0)//第二层检测,fmn是不是噪声
						outbuffer[m*width + n] = inbuffer[m*width + n];//fmn和fmed都不是噪声优先输出当前窗口中心值
					else
						outbuffer[m*width + n] = fmed;//fmn是噪声,输出中间值重新估计该点
					delete[] windows;
					windows = NULL;
					break;
				}
				curwinsize += 2;
				delete[] windows;
				windows = NULL;
			}
		}
	}
	//对边界进行处理,与中值滤波一样
	for (int k = 0;k < pos;k++)
		for (int l =pos;l < width-pos;l++)
			outbuffer[k*width+l] = outbuffer[pos*width+l];
	for(int a=height-pos;a < height;a++)
		for(int b=pos;b < width-pos;b++)
			outbuffer[a*width+b] = outbuffer[(height-pos-1)*width+b];
	for(int c = 0;c < pos;c++)
		for(int d=0;d < height;d++)
			outbuffer[d*width+c] = outbuffer[d*width+pos];
	for (int e = width-pos;e < width;e++)
		for(int f = 0;f < height;f++)
			outbuffer[f*width+e] = outbuffer[f*width+width-pos-1];

	return 0;	
}


实验结果:

以下所有结果均为C++处理。
1,对原图像进行处理的结果(左为原图)
可以发现,自适应中值滤波对图像边缘的保护相当好
数字图像处理,自适应中值滤波的C++实现_第1张图片 数字图像处理,自适应中值滤波的C++实现_第2张图片


2,对乘性噪声图像进行处理的结果(左为噪声图)

注意该噪声为matlab中的乘性噪声,可以发现对乘性噪声的处理效果相当差。

数字图像处理,自适应中值滤波的C++实现_第3张图片数字图像处理,自适应中值滤波的C++实现_第4张图片


3,对椒盐噪声图像进行处理的结果(左为噪声图)

注意该噪声为matlab中的椒盐噪声,可以发现对椒盐噪声的处理效果优秀。

数字图像处理,自适应中值滤波的C++实现_第5张图片数字图像处理,自适应中值滤波的C++实现_第6张图片


最后在此处收录一份别人写的matlab程序:

function f = adpmedian(g, Smax)
%ADPMEDIAN Perform adaptive median filtering.
%   F = ADPMEDIAN(G, SMAX) performs adaptive median filtering of
%   image G.  The median filter starts at size 3-by-3 and iterates up
%   to size SMAX-by-SMAX. SMAX must be an odd integer greater than 1.

%   Copyright 2002-2004 R. C. Gonzalez, R. E. Woods, & S. L. Eddins
%   Digital Image Processing Using MATLAB, Prentice-Hall, 2004
%   $Revision: 1.5 $  $Date: 2003/11/21 14:19:05 $

% SMAX must be an odd, positive integer greater than 1.
if (Smax <= 1) | (Smax/2 == round(Smax/2)) | (Smax ~= round(Smax))
   error('SMAX must be an odd integer > 1.')
end
[M, N] = size(g);

% Initial setup.
f = g;
f(:) = 0;
alreadyProcessed = false(size(g));

% Begin filtering.
for k = 3:2:Smax
   zmin = ordfilt2(g, 1, ones(k, k), 'symmetric');
   zmax = ordfilt2(g, k * k, ones(k, k), 'symmetric');
   zmed = medfilt2(g, [k k], 'symmetric');
   
   processUsingLevelB = (zmed > zmin) & (zmax > zmed) & ...
       ~alreadyProcessed; 
   zB = (g > zmin) & (zmax > g);
   outputZxy  = processUsingLevelB & zB;
   outputZmed = processUsingLevelB & ~zB;
   f(outputZxy) = g(outputZxy);
   f(outputZmed) = zmed(outputZmed);
   
   alreadyProcessed = alreadyProcessed | processUsingLevelB;
   if all(alreadyProcessed(:))
      break;
   end
end

% Output zmed for any remaining unprocessed pixels. Note that this
% zmed was computed using a window of size Smax-by-Smax, which is
% the final value of k in the loop.
f(~alreadyProcessed) = zmed(~alreadyProcessed);




参考资源:

【1】自适应中值滤波算法在图像处理中的应用,刘 颖,陈谨女,长安大学电子与控制工程工程学院
【2】一种改进的自适应中值滤波方法,卫保国,西北工业大学电子信息学院,2008

你可能感兴趣的:(图像处理算法,图像处理算法)