1、NMS(Non-Maximum Suppression)
根据框的概率和IOU进行抑制
import numpy as np
def py_cpu_nms(dets, thresh):
"""Pure Python NMS baseline."""
x1 = dets[:, 0]
y1 = dets[:, 1]
x2 = dets[:, 2]
y2 = dets[:, 3]
scores = dets[:, 4]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
#从大到小排列,取index
order = scores.argsort()[::-1]
#keep为最后保留的边框
keep = []
while order.size > 0:
#order[0]是当前分数最大的窗口,之前没有被过滤掉,肯定是要保留的
i = order[0]
keep.append(i)
#计算窗口i与其他所以窗口的交叠部分的面积,矩阵计算
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
#交/并得到iou值
ovr = inter / (areas[i] + areas[order[1:]] - inter)
#ind为所有与窗口i的iou值小于threshold值的窗口的index,其他窗口此次都被窗口i吸收
inds = np.where(ovr <= thresh)[0]
#下一次计算前要把窗口i去除,所有i对应的在order里的位置是0,所以剩下的加1
order = order[inds + 1]
return keep
def main():
x = np.array([[3,6,9,11,0.9],[6,3,8,7,0.6],[3,7,10,12,0.7],[1,4,13,7,0.2]])
y = py_cpu_nms(x, 0.3)
if __name__ == '__main__':
main()
2、转自网上教程
首先比较二者的参数部分:
np.max:(a, axis=None, out=None, keepdims=False)
求序列的最值
最少接收一个参数
axis:默认为列向(也即 axis=0),axis = 1 时为行方向的最值;
np.maximum:(X, Y, out=None)
X 与 Y 逐位比较取其大者;
最少接收两个参数
>> np.max([-2, -1, 0, 1, 2])
2
>> np.maximum([-2, -1, 0, 1, 2], 0)
array([0, 0, 0, 1, 2])
# 当然 np.maximum 接受的两个参数,也可以大小一致
# 或者更为准确地说,第二个参数只是一个单独的值时,其实是用到了维度的 broadcast 机制;
3、计算IOU
def calcIOU(x1, y1, w1, h1, x2, y2, w2, h2):
if((abs(x1 - x2) < ((w1 + w2)/ 2.0)) and (abs(y1-y2) < ((h1 + h2)/2.0))):
left = max((x1 - (w1 / 2.0)), (x2 - (w2 / 2.0)))
upper = max((y1 - (h1 / 2.0)), (y2 - (h2 / 2.0)))
right = min((x1 + (w1 / 2.0)), (x2 + (w2 / 2.0)))
bottom = min((y1 + (h1 / 2.0)), (y2 + (h2 / 2.0)))
inter_w = abs(left - right)
inter_h = abs(upper - bottom)
inter_square = inter_w * inter_h
union_square = (w1 * h1)+(w2 * h2)-inter_square
calcIOU = inter_square/union_square * 1.0
print("calcIOU:", calcIOU)
else:
print("No intersection!")
return calcIOU
def main():
calcIOU(1, 2, 2, 2, 2, 1, 2, 2)
if __name__ == '__main__':
main()