修复hive表存储格式为PARQUET的分区表中类型定义为int到float的过程

阅读更多

 

 

0 现象

仓库中一个业务表的一个指标是计算平均值,结果历史问题定义成int类型来存储(建表语句对应此字段为int),而且这个表是PARQUET类型的分区表。

 

 

实验方式1:

先建立原始表a的备份表b,使用前面文字中快速拷贝分区表的写法, 然后在b表中做实验,将b表的字段更新成double类型,然后在b表中随机某个分区内查询,分别在hue和hive命令行查询,看看是否报错

 

1.1 拷贝数据

创建备份表,在次表做实验
CREATE TABLE  dm_teach_school_subject_count_day_bak
(
id                   string comment 'mysql结果表中的自增主键,hive里留空串',
period_type          int comment '1:日,2:周,3:月,4:学期内(日)',
province_id          int comment '省份ID',
province_name        string comment '省份名称',
city_id              int comment '地市ID',
city_name            string comment '地市名称',
county_id            int comment '区县ID',
county_name          string comment '区县名称',
school_id            int comment '学校ID',
school_name          string comment '学校名称',
subject_id           string comment '科目ID',
subject_name         string comment '科目名称',
teacher_count        int comment '教师人数',
courseware_user_count int comment '创建课件人数',
courseware_user_count_rate float comment '创建课件人数比',
not_courseware_user_count int comment '未创建课件人数',
never_courseware_user_count int comment '从未创建课件人数',
never_courseware_user_count_rate float comment '从未创建课件人数比',
courseware_count     int comment '创建课件数',
avg_courseware_count int comment '平均创建课件数',

created_time         string comment '记录插入时间'
)
COMMENT '授课-按学校科目统计表日表'
PARTITIONED BY (day STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\001'
LINES TERMINATED BY '\n'
STORED AS PARQUET;

 

1.2 将原来表 dm_teach_school_subject_count_day_bak 修改 avg_courseware_count 变成double 

 

alter table dm_teach_school_subject_count_day_bak change avg_courseware_count avg_courseware_count double  COMMENT '平均创建课件数' cascade; 

 

1.3 随机从 dm_teach_school_subject_count_day 中查询某天的 数据 看是否正常 

 

select * from dm_teach_school_subject_count_day_bak   where day = '2017-04-04' and avg_courseware_count > 0 ; 

 

结果: 在hive命令行正常查询到 ,在hue执行报错如下

 


修复hive表存储格式为PARQUET的分区表中类型定义为int到float的过程_第1张图片
 

 

实验方式2:

先建立原始表a的备份表c,使用前面文字中快速拷贝分区表的写法, 然后在c表中做实验,将b表的字段更新成string类型,然后在c表中随机某个分区内查询,分别在hue和hive命令行查询,看看是否报错

 

命令和上面步骤基本一样,只是将字段 avg_courseware_count 变成了 string, 操作结果如下:

hue和hive命令行都报错,如下:

Caused by: java.lang.UnsupportedOperationException: Cannot inspect org.apache.hadoop.io.IntWritable
        at org.apache.hadoop.hive.ql.io.parquet.serde.primitive.ParquetStringInspector.getPrimitiveJavaObject(ParquetStringInspector.java:77)
        at org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorUtils.getDouble(PrimitiveObjectInspectorUtils.java:743)
        at org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorConverter$DoubleConverter.convert(PrimitiveObjectInspectorConverter.java:238)
        at org.apache.hadoop.hive.ql.udf.generic.GenericUDFOPGreaterThan.evaluate(GenericUDFOPGreaterThan.java:111)
        at org.apache.hadoop.hive.ql.exec.ExprNodeGenericFuncEvaluator._evaluate(ExprNodeGenericFuncEvaluator.java:186)
        at org.apache.hadoop.hive.ql.exec.ExprNodeEvaluator.evaluate(ExprNodeEvaluator.java:77)
        at org.apache.hadoop.hive.ql.exec.ExprNodeEvaluator.evaluate(ExprNodeEvaluator.java:65)
        at org.apache.hadoop.hive.ql.exec.FilterOperator.processOp(FilterOperator.java:106)
        at org.apache.hadoop.hive.ql.exec.Operator.forward(Operator.java:815)
        at org.apache.hadoop.hive.ql.exec.TableScanOperator.processOp(TableScanOperator.java:97)
        at org.apache.hadoop.hive.ql.exec.MapOperator$MapOpCtx.forward(MapOperator.java:157)
        at org.apache.hadoop.hive.ql.exec.MapOperator.process(MapOperator.java:497)
        ... 9 more

 

 

 

3 最终采用的方式:

新建表d,新表表的字段类型为正确的字段类型,然后将a表的分区数据拷贝到d表中,最后a表重命名为a_bak表,d表重命名为a表作为新的业务表a.

 

CREATE TABLE  dm_teach_school_subject_count_day_bak2
(
id                   string comment 'mysql结果表中的自增主键,hive里留空串',
period_type          int comment '1:日,2:周,3:月,4:学期内(日)',
province_id          int comment '省份ID',
province_name        string comment '省份名称',
city_id              int comment '地市ID',
city_name            string comment '地市名称',
county_id            int comment '区县ID',
county_name          string comment '区县名称',
school_id            int comment '学校ID',
school_name          string comment '学校名称',
subject_id           string comment '科目ID',
subject_name         string comment '科目名称',
teacher_count        int comment '教师人数',
courseware_user_count int comment '创建课件人数',
courseware_user_count_rate float comment '创建课件人数比',
not_courseware_user_count int comment '未创建课件人数',
never_courseware_user_count int comment '从未创建课件人数',
never_courseware_user_count_rate float comment '从未创建课件人数比',
courseware_count     int comment '创建课件数',
avg_courseware_count double comment '平均创建课件数',  ----> 指定正确类型
online_user_count    int comment '在线授课人数',
online_user_count_rate    float comment '在线授课人数比',
not_online_user_count int comment '未在线授课人数',
never_online_user_count int comment '从未在线授课人数',
never_online_user_count_rate float comment '从未在线授课人数比',
online_duration      int comment '在线授课时长(秒)',
avg_online_duration  int comment '平均在线授课时长(秒)',
created_time         string comment '记录插入时间'
)
COMMENT '授课-按学校科目统计表日表'
PARTITIONED BY (day STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\001'
LINES TERMINATED BY '\n'
STORED AS PARQUET;

 

将原来表数据拷贝到新表中:

set hive.exec.dynamic.partition.mode=nonstrict;  必须设置
 
insert overwrite table dm_teach_school_subject_count_day_bak2 partition(day) 
select   
id,                   
period_type,          
province_id,          
province_name,        
city_id,              
city_name,            
county_id,            
county_name,
school_id ,           
school_name,          
subject_id ,          
subject_name ,        
teacher_count,
courseware_user_count,
courseware_user_count_rate,
not_courseware_user_count,
never_courseware_user_count,
never_courseware_user_count_rate,
courseware_count,
avg_courseware_count,
online_user_count,
online_user_count_rate,
not_online_user_count,
never_online_user_count,
never_online_user_count_rate,
online_duration,
avg_online_duration,
created_time,
day 
from dm_teach_school_subject_count_day  distribute by day; 

 

在 hue和hive命令行分别执行:

select * from dm_teach_school_subject_count_day_bak2   where day = '2017-04-04' and avg_courseware_count > 0 ;    结果均正常

 

  • 修复hive表存储格式为PARQUET的分区表中类型定义为int到float的过程_第2张图片
  • 大小: 16.3 KB
  • 查看图片附件

你可能感兴趣的:(修复hive表存储格式为PARQUET的分区表中类型定义为int到float的过程)