机器学习项目

第一次课音乐推荐系统

适合推荐系统的两个库:
查看ipynb文件,使用safiri,先终端运行jupyter notebook。

  1. surprise
  2. lightfm

一个项目一般分为两个部分:一个offline的modelling和一个online prediction。(online一般用java或者C++,线上尽量要快,例如网易云会每一天提前算好明天的推荐内容,用户在上线点进去是直接推荐的,不会实时去计算)

这一步的目的,为了将刚才的数据解析成
image.png

机器学习项目_第1张图片
image.png
#filter过滤器的用法
def is_odd(n):
    return n % 2 == 1
 
newlist = filter(is_odd, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
print(newlist)
#coding: utf-8
#解析成userid itemid rating timestamp行格式
import json
import sys

#配合下面的filter的一个方法
def is_null(s): 
    return len(s.split(","))>2

def parse_song_info(song_info):
    try:
        song_id, name, artist, popularity = song_info.split(":::")
        return ",".join([song_id, name, artist, popularity])
        return ",".join([song_id,"1.0",'1300000'])
    except Exception,e:
        print e
        print song_info
        return ""

def parse_playlist_line(in_line):
    try:
        contents = in_line.strip().split("\t") ##分割内容
        name, tags, playlist_id, subscribed_count = contents[0].split("##")
        songs_info = map(lambda x:playlist_id+","+parse_song_info(x), contents[1:])
##这一步是map,lambda的结合应用,用来写成一个专辑号,对应多个歌曲信息的形式
        songs_info = filter(is_null, songs_info)
        return "\n".join(songs_info)
    except Exception, e:
        print e
        return False
        
##依次读入每一个专辑的内容
def parse_file(in_file, out_file):
    out = open(out_file, 'w')
    for line in open(in_file):
        result = parse_playlist_line(line)
        if(result):
            out.write(result.encode('utf-8').strip()+"\n")
    out.close()
    漫步西欧小镇上##小语种,旅行##69413685##474    18682332::Wäg vo dir::Joy Amelie::70.0

音乐系统2

import numpy as np
import pandas as pd

ids = np.random.randint(0, 10, 2)
x = np.array([[0,1],[2,3],[4,5],[6,7],[8,9],[10,11],[12,13],[14,15],[16,17],[18,19]])
print (ids)
print (x[:,1])
print (x[1,:])

print (x[ids,:])

输出:
/Users/yuanxin/PycharmProjects/untitled/venv/bin/python /Users/yuanxin/Documents/大学/Python/code/code/课外拓展学习资料/test1.py
[7 9]
[ 1  3  5  7  9 11 13 15 17 19]
[2 3]
[[14 15]
 [18 19]]

Process finished with exit code 0

----------------------------
import numpy as np
import pandas as pd

def read_data_and_process(filname, sep="\t"):
    col_names = ["user", "item", "rate", "st"]
    df = pd.read_csv(filname, sep=sep, header=None, names=col_names, engine='python')
    print(df)
    df["user"] -= 1
    df["item"] -= 1
    for col in ("user", "item"):
        df[col] = df[col].astype(np.int32)
        df["rate"] = df["rate"].astype(np.float32)
    return df

test=read_data_and_process("/Users/yuanxin/Desktop/test.csv", sep="\t")
print (test)

输出:
/Users/yuanxin/PycharmProjects/untitled/venv/bin/python /Users/yuanxin/Documents/大学/Python/code/code/课外拓展学习资料/test1.py
   user  item  rate  st
0   123    11  1134  31
1   121    22  3134  23
2   124    15  1242  43
   user  item    rate  st
0   122    10  1134.0  31
1   120    21  3134.0  23
2   123    14  1242.0  43

Process finished with exit code 0

第三次课 金融反欺诈

模型整合的三种方式:

  • bagging:(集体智慧)
    将训练集自动抽样,产生出构建子模型所需要的子训练集,再进行综合打分得到的结果。典型应用是随机森林。
  • stacking:(站在巨人的肩膀上,层叠式递进)
    有点类似于公司信息汇报,底层提交报告给中层,中层再提交报告,Stacking先用第一层生成决策结果,以多层模型对模式进行识别,在下一层做汇总再提交给下一层进行处理,并最终得出结果。典型应用:神经网络(多层对图像进行挖掘和汇总)。
  • boosting:(一万小时定律)
    一个弱的分类器,通过不断去学习,直到能够通过一系列的基模型去优成一个强大的模型。典型应用为XGBOOST。

常见的模型融合:

  • Xgboost:
    DMLC提供的大杀器,性能优越,表现稳定,几乎垄断了Kaggle比赛的Top榜单。

  • lightGBM:
    微软开源提供,性能略快于Xgboost,可以直接处理字符型的类别变量列,不需要额外变换。

资产证券化:

https://www.zhihu.com/question/20621510

归一化的简单理解:

加速迭代
https://www.zhihu.com/question/20455227

ks曲线

机器学习项目_第2张图片
image.png

参考微信文章:信用风险评分卡系列之评分卡(四)

你可能感兴趣的:(机器学习项目)