- Moodle + Websoft9:创新教育的强大组合,助力教学与学习
开源软件
Moodle+Websoft9:构建未来课堂的技术基石一、Moodle:开源生态的深度解析•模块化设计:支持超800个官方插件,如H5P交互内容创作、BigBlueButton虚拟课堂,满足个性化教学需求。•学习分析引擎:内置LearningAnalyticsAPI,可集成Python/R语言进行深度学习,预测学生学业风险。•移动优先战略:MoodleApp支持离线学习、扫码签到,2023年新增A
- 你准备好迎接它了吗?英伟达CEO黄仁勋预言:人形机器人将成为未来主流
杰克尼
机器人人工智能
在近日举行的“CadenceLIVE硅谷2024”大会上,英伟达公司的首席执行官黄仁勋与大会主办方Cadence公司的CEO进行了一场富有深度的对话。在这场引人瞩目的交流中,黄仁勋大胆预测,未来人形机器人将成为主流,引领科技发展的新潮流。你准备好迎接它了吗?英伟达CEO黄仁勋预言:人形机器人将成为未来主流©由18183手游网提供黄仁勋坚信,在不久的将来,我们所有人都都要制造的设备将会是人形机器人。
- 【MALTAB递归预测未来】VMD-Bayes-LSTM单变量时序预测-递归预测未来 (单输入单输出)
前程算法屋
私信获取源码lstm人工智能rnn
VMD-Bayes-LSTM单变量时序预测递归预测未来MALTAB代码一、引言1.1单变量时序预测的背景和意义在当今快速发展的社会中,数据无处不在,而时间序列数据作为其中一种重要类型,在众多领域发挥着不可替代的作用。单变量时序预测,即对单一变量随时间变化趋势的预测,在工业、经济等领域具有极其重要的意义。工业生产是国民经济的支柱产业,其稳定运行对整个社会经济发展至关重要。在制造业中,设备是生产的基础
- Matlab基于BP神经网络与NSGA-II的多目标工艺参数优化方法
天天酷科研
工艺参数优化matlab神经网络工艺参数优化
Matlab基于BP神经网络与NSGA-II的多目标工艺参数优化方法一、方法原理与框架BP神经网络的作用BP神经网络通过建立工艺参数与目标性能(如翘曲变形、收缩率、硬度等)之间的非线性映射关系,作为代理模型替代复杂的物理仿真或实验。其优势在于:能够处理多输入-多输出的复杂非线性关系,例如激光功率、扫描速度与熔覆层性能的关联。在注塑成型中,预测体积收缩率和翘曲变形的相对误差可控制在5%以内。通过正交
- 集成学习(Ensemble Learning)基础知识1
代码骑士
#机器学习集成学习机器学习人工智能
文章目录一、集成学习1、基本概念2、回顾:误差的偏差-方差分解3、为什么集成学习有效?4、基学习器:“好而不同”5、集成学习的两个基本问题(1)如何训练出具有差异性的多个基学习器?(2)如何将多个基学习器的预测结果集成为最终的强学习器预测结果?二、自助法(Bagging)1、Bagging2、BootstrapBootstrap采样的数学性质3、Bagging:集成学习的两个基本问题(1)如何训练
- 图像分割技术的应用
不要不开心了
计算机视觉dashpython
今天的内容为:图像分割技术与应用,以下是内容总结1.图像分割概述图像分割是指预测目标的轮廓,将不同的像素划分到不同的类别,属于非常细粒度的分类任务。其应用场景广泛,包括人像抠图、医学组织提取、遥感图像分析、自动驾驶、材料图像分析等。2.图像分割的前景与背景-物体(Things):可数的前景目标,如行人、车辆等。-事物(Stuff):不可数的背景,如天空、草地、路面等。3.图像分割的三层境界-语义分
- 火山引擎宋慎义:RTC产品需多样化才能良性发展
LiveVideoStack_
音视频RTC视频云音视频webrtc
编者按:自大流行以来,我们见证了多媒体技术走向巅峰,RTC伴随着生活的方方面面,不可分割。一时间,多媒体圈空前热闹,资本涌入,人才争夺空前火爆,跳槽很多时候意味着薪资数倍增长。然而好景不长,2021年在线教育“团灭”,导致许多技术服务商现金流紧张。另一方面,RTC服务过分同质化,价格战不可避免。许多小公司无力支撑,或被收购,或被迫裁员转型退出战场,整个行业处在焦虑的煎熬中。剩者为王,也许真正的赢家
- 电商API接口:赋能商家,领跑未来电商新赛道
lovelin+vI7809804594
爬虫人工智能pythonAPI反向海淘
在数字经济浪潮下,电子商务的竞争已从简单的价格战转向生态系统的效率比拼。API(ApplicationProgrammingInterface)作为数字世界的"连接器",正在重塑电商行业的运行逻辑。全球API管理市场预计在2026年突破210亿美元规模,其中电商领域占据最大应用场景。从亚马逊的AWS到阿里巴巴的开放平台,API经济正在构建新型商业基础设施,推动电商行业进入"无界融合"的新纪元。本文
- DApp开发需要多少钱?全面解析DApp开发成本
Lovely_xwys
区块链开发区块链人工智能web3
随着区块链技术的不断发展和普及,去中心化应用(DApp)逐渐成为金融科技领域的新宠。DApp以其去中心化、透明性和安全性等特点,吸引了众多开发者和投资者的关注。然而,对于想要涉足DApp开发的人来说,最关心的问题之一就是:DApp开发需要多少钱?本文将从多个角度全面解析DApp的开发成本。一、DApp开发成本概述DApp的开发成本并非一成不变,它受到多种因素的影响,包括项目的复杂度、功能需求、技术
- 基于传感器数据的城市空气质量预测与污染源分类
云端.代码农夫CloudFarmer
分类数据挖掘人工智能
项目名称:基于传感器数据的城市空气质量预测与污染源分类创新点:结合时间序列预测(回归)与污染源分类(多标签分类),使用公开API获取实时数据。项目目标预测未来6小时的空气质量指数(AQI)。根据传感器数据判断可能的污染源类型(如工业排放、交通尾气、扬尘等)。数据集来源数据获取:通过开放API实时抓取(如OpenAQ、AirNow或国内公开的城市空气质量平台)。特征示例:PM2.5、PM10、SO2
- 一文搞懂大数据神器Spark,真的太牛了!
qq_23519469
大数据spark分布式
Spark是什么在如今这个大数据时代,数据量呈爆炸式增长,传统的数据处理方式已经难以满足需求。就拿电商平台来说,每天产生的交易数据、用户浏览数据、评论数据等,数量巨大且种类繁多。假如要对这些数据进行分析,比如分析用户的购买行为,找出最受欢迎的商品,预测未来的销售趋势等,用普通的单机处理方式,可能需要花费很长时间,甚至根本无法完成。这时,Spark就应运而生了。Spark是一个开源的、基于内存计算的
- 蓝桥杯练习-3.17
梨绘小棠
蓝桥杯贪心算法c++
蓝桥杯练习-3.17代码练习•旅行家的预算-贪心问题描述一个旅行家想驾驶汽车以最少的费用从一个城市到另一个城市(假设出发时油箱是空的)。给定两个城市之间的距离D1、汽车油箱的容量C(以升为单位)、每升汽油能行驶的距离D2、出发点每升汽油价格P和沿途油站数N(N可以为零),油站i离出发点的距离Di、每升汽油价格Pi(i=1,2,……N)。计算结果四舍五入至小数点后两位。如果无法到达目的地,则输出“N
- 深入解析TTM市盈率在股票投资中的应用
scoone
杂项小计生活学习
摘要:本文对TTM市盈率的概念、计算方法、优缺点及其在股票投资决策中的作用进行了详细阐述,旨在帮助投资者更好地运用这一财务指标进行投资分析。一、TTM市盈率概述TTM市盈率,即TrailingTwelveMonths市盈率,是一种反映股票价格与公司最近12个月盈利能力的比率。它通过计算公司过去四个季度净利润的总和,再除以在外流通的普通股总数,得到每股收益(EPS),最后以股价除以每股收益得到TTM
- 常见的数学统计模型
若木胡
数学模型
以下是常见的数学统计模型分类及简要说明,适用于数据分析、预测和推断等场景:1.参数模型(ParametricModels)假设数据服从特定分布(如正态分布),通过估计参数来描述数据规律。1.1线性回归模型数学形式:(y=\beta_0+\beta_1x_1+\beta_2x_2+\cdots+\beta_px_p+\epsilon)应用:预测连续型目标变量(如房价预测)。特点:简单、可解释性强,假
- 做电池寿命预测有福了---2024最新退化数据集,来自cell子刊
优化算法侠Swarm-Opti
深度学习数据集电池寿命预测深度学习人工智能
引言本期介绍2024年最新发表在cell子刊CellReportsPhysicalScience上的电池退化数据集。该数据集是世界上规模最大,最贴近实际运行场景,持续时间最长的电池退化数据集。在实验室和现实生活中对电池退化进行了为期4年的广泛实验调查,考虑了随机充放电电流、频率、深度以及多电池成组、环境温度的影响,涉及数百个电池和电池组的大约546,000次充放电循环。参考文献DongzhenLy
- 金融领域股票价格预测:线性回归原理、实现与应用
ZhShy23
python机器学习入门实战#机器学习#Python学习金融线性回归机器学习
金融领域股票价格预测:线性回归原理、实现与应用一、线性回归原理线性回归是一种用于建立自变量和因变量之间线性关系的统计模型。在股票价格预测中,我们可以将一些可能影响股票价格的因素(如成交量、市场指数等)作为自变量,股票价格作为因变量,通过线性回归模型来建立它们之间的关系。线性回归的基本方程为:[y=\beta_0+\beta_1x_1+\beta_2x_2+\cdots+\beta_nx_n+\ep
- 低成本入门!盘点6款适合中小企业的ERP系统
在竞争激烈的市场环境中,中小企业亟需通过数字化工具提升运营效率。ERP系统(企业资源计划)能够整合财务、库存、销售等核心业务流程,是降低成本、优化管理的关键利器。今天,我将为大家推荐6款便宜又好用的ERP系统,分别从功能、价格、适用场景等方面为大家详细介绍这些产品,希望能帮助你找到最适合自己企业的ERP系统。一、ZohoBooks:轻量级ERP,中小企业的全能助手ZohoBooks是Zoho旗下专
- 2025制造业进销存软件解析:6款主流软件功能+价格对比
制造业中小企业的进销存管理需要兼顾效率、成本和合规性。本文基于2025年市场调研,精选6款主流软件(ZohoBooks、用友U8+、金蝶云星空、SAPBusinessOne、QuickBooksCommerce、简道云),从功能适配性、价格竞争力、行业场景覆盖等维度进行全面对比,助力企业精准选型。一、制造业进销存管理的核心需求生产流程协同:BOM管理、工单跟踪、工序进度可视化库存精准管控:多仓库调
- DeepSeek行业应用案例——教育
未来智慧谷
DeepSeek人工智能大数据AI教育
一、简介在数字化浪潮汹涌澎湃的当下,DeepSeek以其强大的技术实力,如同一股创新的洪流,席卷众多行业,为各领域带来了前所未有的变革与突破。本案例集初步收录了40多个来自农业、制造业、汽车行业、手机行业、智能家居、物流、云服务、办公、网络安全、金融、医疗、教育等多个关键行业的应用案例。从助力农业实现病虫害精准预测与智能灌溉,到推动制造业生产故障预警与产品质量提升;从优化汽车智能交互体验与智能驾驶
- DeepSeek行业应用案例——制造业篇
未来智慧谷
人工智能深度学习大数据自然语言处理
一、简介在数字化浪潮汹涌澎湃的当下,DeepSeek以其强大的技术实力,如同一股创新的洪流,席卷众多行业,为各领域带来了前所未有的变革与突破。本案例集初步收录了40多个来自农业、制造业、汽车行业、手机行业、智能家居、物流、云服务、办公、网络安全、金融、医疗、教育等多个关键行业的应用案例。从助力农业实现病虫害精准预测与智能灌溉,到推动制造业生产故障预警与产品质量提升;从优化汽车智能交互体验与智能驾驶
- Yolov8训练自己的数据集(脱离ultralytics库)
爱吃肉的鹏
YOLO
最近在整理关于yolov8的相关内容,有个很大的问题,抛开yolov8性能不谈,yolov8代码的使用灵活性不如yolov5,尤其是对于一些新手或者对yolo框架不是很熟悉的人(这也是因人而异,有些人可能会喜欢v8代码的使用方式)。比如在使用v8的时候需要安装ultralytics库,然后再调用YOLO进行训练或者预测,那么就有这几个问题:问题1:安装了ultralytics库后如何使用YOLO呢
- Autoformer 架构详细解释及举例说明
six.学长
autoformer人工智能
Autoformer架构详细解释上述图片展示了Autoformer架构的工作流程,包含编码器和解码器的结构。我们来详细解析图中的各个组件及其功能:编码器部分(AutoformerEncoder)输入数据(EncoderInput):输入的是需要预测的时间序列数据。自动相关机制(Auto-Correlation):这个模块通过检测时间序列中的周期性依赖关系,生成相关矩阵(K,Q,V表示键、查询和值)
- 【Hinton论文精读】The Forward-Forward Algorithm: Some Preliminary Investigations-202212
tyhj_sf
论文研读笔记ML理论系列人工智能深度学习FF算法
博文导航0引言1论文摘要2反向传播有什么问题呢?3Forward-Forward算法3.1使用逐层优化函数学习多层表示4Forward-Forward算法的实验4.1反向传播baseline4.2FF算法的一个简单的无监督的例子4.3FF算法的一个简单的监督例子4.4使用FF算法来模拟感知中自上而下的效应4.5作为教师使用空间环境的预测4.6CIFAR-10实验5睡眠6FF算法与其他对比性学习技术
- 基于粒子滤波与卡尔曼滤波的锂离子电池放电时间预测与使用特征研究
算法如诗
电池建模(RULBC)粒子滤波锂离子电池放电时间预测
基于粒子滤波与卡尔曼滤波的锂离子电池放电时间预测与使用特征研究一、研究背景与意义锂离子电池作为现代储能系统的核心组件,其放电时间(End-of-DischargeTime,EOD)的准确预测对电池管理系统(BMS)的可靠性和安全性至关重要。传统方法(如安时积分法)易受噪声、温度漂移等因素干扰,而基于状态估计的滤波算法(粒子滤波/PF、卡尔曼滤波/KF)通过动态更新模型参数,能显著提升预测精度。二、
- Python 数据分析实战:电动汽车行业发展态势与市场策略洞察
萧十一郎@
pythonpython数据分析开发语言
目录一、案例背景二、代码实现2.1数据收集与导入2.2数据探索性分析2.3数据清洗2.4数据分析2.4.1市场规模与增长趋势2.4.2消费者需求分析2.4.3企业竞争格局2.4.4政策影响分析2.4.5构建消费者购买意愿预测模型三、主要的代码难点解析3.1数据收集与导入3.2数据清洗-缺失值处理3.3数据清洗-异常值处理3.4数据分析-消费者需求分析3.5数据分析-构建消费者购买意愿预测模型四、可
- 用Python抓取网页标题:使用`requests`库的实用指南
清水白石008
pythonPython题库python开发语言
用Python抓取网页标题:使用requests库的实用指南在数据获取的时代,网页抓取(WebScraping)成为了一项重要的技能。无论是获取新闻标题、产品价格,还是数据分析,网页抓取都能提供丰富的信息。本文将详细介绍如何使用Python的requests库编写一个简单的爬虫,抓取某个网站的标题。我们将通过实例和代码片段,使整个过程清晰易懂,帮助你快速上手网页抓取。一、了解网页抓取网页抓取是指通
- 深入探索 PyTorch 在语音识别中的应用
Zoro|
PyTorchDeepLearning机器学习pytorch语音识别人工智能
深入探索PyTorch在语音识别中的应用在本篇博客中,我将分享如何使用PyTorch进行语音识别任务,重点围绕环境配置、数据预处理、特征提取、模型设计以及模型比较展开。本文基于最近一次机器学习作业(HW2)的任务内容,任务目标是对语音信号进行逐帧音素预测,从而完成多类别分类任务。一、介绍任务背景任务目标:利用深度神经网络对语音信号进行逐帧音素预测。音素定义:音素是语音中能够区分单词的最小语音单位。
- AI模型技术前沿与跨场景应用实践
智能计算研究中心
其他
内容概要当前AI模型技术正呈现多维度突破与跨领域融合的特征。从技术演进角度看,可解释性模型与量子计算框架的协同发展正在突破传统黑箱限制,而联邦学习、自适应优化等技术则为复杂场景建模提供了新的方法论支撑。应用层面,TensorFlow与PyTorch框架在医疗影像诊断、金融时序预测等领域的实战案例,验证了深度学习模型在垂直行业的泛化能力。值得关注的是,工具链整合已成为技术落地的关键环节,MXNet与
- 基于MATLAB的遗传算法优化BP神经网络航空发动机寿命预测
默默科研仔
发动机寿命预测matlab神经网络发动机寿命预测
基于MATLAB的遗传算法优化BP神经网络航空发动机寿命预测一、基本原理与优化框架遗传算法(GA)与BP神经网络的结合(GA-BP)主要通过全局搜索优化BP神经网络的初始权值和阈值,解决传统BP易陷入局部最优、收敛速度慢的问题。具体优化形式包括:初始参数优化:GA仅优化初始参数,后续仍依赖BP反向传播微调。全局参数优化:GA直接优化全部网络参数,无需BP参与。混合优化:GA优化初始参数后,再通过B
- 统计机器学习 (Statistical Machine Learning) 原理与代码实例讲解
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
统计机器学习(StatisticalMachineLearning)原理与代码实例讲解1.背景介绍统计机器学习是现代人工智能和数据科学的核心领域之一。它结合了统计学和计算机科学的理论与方法,通过数据驱动的方式来构建预测模型和决策系统。统计机器学习不仅在学术研究中占据重要地位,还在工业界有广泛应用,如推荐系统、图像识别、自然语言处理等。2.核心概念与联系2.1统计学与机器学习的关系统计学关注数据的收
- 多线程编程之卫生间
周凡杨
java并发卫生间线程厕所
如大家所知,火车上车厢的卫生间很小,每次只能容纳一个人,一个车厢只有一个卫生间,这个卫生间会被多个人同时使用,在实际使用时,当一个人进入卫生间时则会把卫生间锁上,等出来时打开门,下一个人进去把门锁上,如果有一个人在卫生间内部则别人的人发现门是锁的则只能在外面等待。问题分析:首先问题中有两个实体,一个是人,一个是厕所,所以设计程序时就可以设计两个类。人是多数的,厕所只有一个(暂且模拟的是一个车厢)。
- How to Install GUI to Centos Minimal
sunjing
linuxInstallDesktopGUI
http://www.namhuy.net/475/how-to-install-gui-to-centos-minimal.html
I have centos 6.3 minimal running as web server. I’m looking to install gui to my server to vnc to my server. You can insta
- Shell 函数
daizj
shell函数
Shell 函数
linux shell 可以用户定义函数,然后在shell脚本中可以随便调用。
shell中函数的定义格式如下:
[function] funname [()]{
action;
[return int;]
}
说明:
1、可以带function fun() 定义,也可以直接fun() 定义,不带任何参数。
2、参数返回
- Linux服务器新手操作之一
周凡杨
Linux 简单 操作
1.whoami
当一个用户登录Linux系统之后,也许他想知道自己是发哪个用户登录的。
此时可以使用whoami命令。
[ecuser@HA5-DZ05 ~]$ whoami
e
- 浅谈Socket通信(一)
朱辉辉33
socket
在java中ServerSocket用于服务器端,用来监听端口。通过服务器监听,客户端发送请求,双方建立链接后才能通信。当服务器和客户端建立链接后,两边都会产生一个Socket实例,我们可以通过操作Socket来建立通信。
首先我建立一个ServerSocket对象。当然要导入java.net.ServerSocket包
ServerSock
- 关于框架的简单认识
西蜀石兰
框架
入职两个月多,依然是一个不会写代码的小白,每天的工作就是看代码,写wiki。
前端接触CSS、HTML、JS等语言,一直在用的CS模型,自然免不了数据库的链接及使用,真心涉及框架,项目中用到的BootStrap算一个吧,哦,JQuery只能算半个框架吧,我更觉得它是另外一种语言。
后台一直是纯Java代码,涉及的框架是Quzrtz和log4j。
都说学前端的要知道三大框架,目前node.
- You have an error in your SQL syntax; check the manual that corresponds to your
林鹤霄
You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'option,changed_ids ) values('0ac91f167f754c8cbac00e9e3dc372
- MySQL5.6的my.ini配置
aigo
mysql
注意:以下配置的服务器硬件是:8核16G内存
[client]
port=3306
[mysql]
default-character-set=utf8
[mysqld]
port=3306
basedir=D:/mysql-5.6.21-win
- mysql 全文模糊查找 便捷解决方案
alxw4616
mysql
mysql 全文模糊查找 便捷解决方案
2013/6/14 by 半仙
[email protected]
目的: 项目需求实现模糊查找.
原则: 查询不能超过 1秒.
问题: 目标表中有超过1千万条记录. 使用like '%str%' 进行模糊查询无法达到性能需求.
解决方案: 使用mysql全文索引.
1.全文索引 : MySQL支持全文索引和搜索功能。MySQL中的全文索
- 自定义数据结构 链表(单项 ,双向,环形)
百合不是茶
单项链表双向链表
链表与动态数组的实现方式差不多, 数组适合快速删除某个元素 链表则可以快速的保存数组并且可以是不连续的
单项链表;数据从第一个指向最后一个
实现代码:
//定义动态链表
clas
- threadLocal实例
bijian1013
javathreadjava多线程threadLocal
实例1:
package com.bijian.thread;
public class MyThread extends Thread {
private static ThreadLocal tl = new ThreadLocal() {
protected synchronized Object initialValue() {
return new Inte
- activemq安全设置—设置admin的用户名和密码
bijian1013
javaactivemq
ActiveMQ使用的是jetty服务器, 打开conf/jetty.xml文件,找到
<bean id="adminSecurityConstraint" class="org.eclipse.jetty.util.security.Constraint">
<p
- 【Java范型一】Java范型详解之范型集合和自定义范型类
bit1129
java
本文详细介绍Java的范型,写一篇关于范型的博客原因有两个,前几天要写个范型方法(返回值根据传入的类型而定),竟然想了半天,最后还是从网上找了个范型方法的写法;再者,前一段时间在看Gson, Gson这个JSON包的精华就在于对范型的优雅简单的处理,看它的源代码就比较迷糊,只其然不知其所以然。所以,还是花点时间系统的整理总结下范型吧。
范型内容
范型集合类
范型类
- 【HBase十二】HFile存储的是一个列族的数据
bit1129
hbase
在HBase中,每个HFile存储的是一个表中一个列族的数据,也就是说,当一个表中有多个列簇时,针对每个列簇插入数据,最后产生的数据是多个HFile,每个对应一个列族,通过如下操作验证
1. 建立一个有两个列族的表
create 'members','colfam1','colfam2'
2. 在members表中的colfam1中插入50*5
- Nginx 官方一个配置实例
ronin47
nginx 配置实例
user www www;
worker_processes 5;
error_log logs/error.log;
pid logs/nginx.pid;
worker_rlimit_nofile 8192;
events {
worker_connections 4096;}
http {
include conf/mim
- java-15.输入一颗二元查找树,将该树转换为它的镜像, 即在转换后的二元查找树中,左子树的结点都大于右子树的结点。 用递归和循环
bylijinnan
java
//use recursion
public static void mirrorHelp1(Node node){
if(node==null)return;
swapChild(node);
mirrorHelp1(node.getLeft());
mirrorHelp1(node.getRight());
}
//use no recursion bu
- 返回null还是empty
bylijinnan
javaapachespring编程
第一个问题,函数是应当返回null还是长度为0的数组(或集合)?
第二个问题,函数输入参数不当时,是异常还是返回null?
先看第一个问题
有两个约定我觉得应当遵守:
1.返回零长度的数组或集合而不是null(详见《Effective Java》)
理由就是,如果返回empty,就可以少了很多not-null判断:
List<Person> list
- [科技与项目]工作流厂商的战略机遇期
comsci
工作流
在新的战略平衡形成之前,这里有一个短暂的战略机遇期,只有大概最短6年,最长14年的时间,这段时间就好像我们森林里面的小动物,在秋天中,必须抓紧一切时间存储坚果一样,否则无法熬过漫长的冬季。。。。
在微软,甲骨文,谷歌,IBM,SONY
- 过度设计-举例
cuityang
过度设计
过度设计,需要更多设计时间和测试成本,如无必要,还是尽量简洁一些好。
未来的事情,比如 访问量,比如数据库的容量,比如是否需要改成分布式 都是无法预料的
再举一个例子,对闰年的判断逻辑:
1、 if($Year%4==0) return True; else return Fasle;
2、if ( ($Year%4==0 &am
- java进阶,《Java性能优化权威指南》试读
darkblue086
java性能优化
记得当年随意读了微软出版社的.NET 2.0应用程序调试,才发现调试器如此强大,应用程序开发调试其实真的简单了很多,不仅仅是因为里面介绍了很多调试器工具的使用,更是因为里面寻找问题并重现问题的思想让我震撼,时隔多年,Java已经如日中天,成为许多大型企业应用的首选,而今天,这本《Java性能优化权威指南》让我再次找到了这种感觉,从不经意的开发过程让我刮目相看,原来性能调优不是简单地看看热点在哪里,
- 网络学习笔记初识OSI七层模型与TCP协议
dcj3sjt126com
学习笔记
协议:在计算机网络中通信各方面所达成的、共同遵守和执行的一系列约定 计算机网络的体系结构:计算机网络的层次结构和各层协议的集合。 两类服务: 面向连接的服务通信双方在通信之前先建立某种状态,并在通信过程中维持这种状态的变化,同时为服务对象预先分配一定的资源。这种服务叫做面向连接的服务。 面向无连接的服务通信双方在通信前后不建立和维持状态,不为服务对象
- mac中用命令行运行mysql
dcj3sjt126com
mysqllinuxmac
参考这篇博客:http://www.cnblogs.com/macro-cheng/archive/2011/10/25/mysql-001.html 感觉workbench不好用(有点先入为主了)。
1,安装mysql
在mysql的官方网站下载 mysql 5.5.23 http://www.mysql.com/downloads/mysql/,根据我的机器的配置情况选择了64
- MongDB查询(1)——基本查询[五]
eksliang
mongodbmongodb 查询mongodb find
MongDB查询
转载请出自出处:http://eksliang.iteye.com/blog/2174452 一、find简介
MongoDB中使用find来进行查询。
API:如下
function ( query , fields , limit , skip, batchSize, options ){.....}
参数含义:
query:查询参数
fie
- base64,加密解密 经融加密,对接
y806839048
经融加密对接
String data0 = new String(Base64.encode(bo.getPaymentResult().getBytes(("GBK"))));
String data1 = new String(Base64.decode(data0.toCharArray()),"GBK");
// 注意编码格式,注意用于加密,解密的要是同
- JavaWeb之JSP概述
ihuning
javaweb
什么是JSP?为什么使用JSP?
JSP表示Java Server Page,即嵌有Java代码的HTML页面。使用JSP是因为在HTML中嵌入Java代码比在Java代码中拼接字符串更容易、更方便和更高效。
JSP起源
在很多动态网页中,绝大部分内容都是固定不变的,只有局部内容需要动态产生和改变。
如果使用Servl
- apple watch 指南
啸笑天
apple
1. 文档
WatchKit Programming Guide(中译在线版 By @CocoaChina) 译文 译者 原文 概览 - 开始为 Apple Watch 进行开发 @星夜暮晨 Overview - Developing for Apple Watch 概览 - 配置 Xcode 项目 - Overview - Configuring Yo
- java经典的基础题目
macroli
java编程
1.列举出 10个JAVA语言的优势 a:免费,开源,跨平台(平台独立性),简单易用,功能完善,面向对象,健壮性,多线程,结构中立,企业应用的成熟平台, 无线应用 2.列举出JAVA中10个面向对象编程的术语 a:包,类,接口,对象,属性,方法,构造器,继承,封装,多态,抽象,范型 3.列举出JAVA中6个比较常用的包 Java.lang;java.util;java.io;java.sql;ja
- 你所不知道神奇的js replace正则表达式
qiaolevip
每天进步一点点学习永无止境纵观千象regex
var v = 'C9CFBAA3CAD0';
console.log(v);
var arr = v.split('');
for (var i = 0; i < arr.length; i ++) {
if (i % 2 == 0) arr[i] = '%' + arr[i];
}
console.log(arr.join(''));
console.log(v.r
- [一起学Hive]之十五-分析Hive表和分区的统计信息(Statistics)
superlxw1234
hivehive分析表hive统计信息hive Statistics
关键字:Hive统计信息、分析Hive表、Hive Statistics
类似于Oracle的分析表,Hive中也提供了分析表和分区的功能,通过自动和手动分析Hive表,将Hive表的一些统计信息存储到元数据中。
表和分区的统计信息主要包括:行数、文件数、原始数据大小、所占存储大小、最后一次操作时间等;
14.1 新表的统计信息
对于一个新创建
- Spring Boot 1.2.5 发布
wiselyman
spring boot
Spring Boot 1.2.5已在7月2日发布,现在可以从spring的maven库和maven中心库下载。
这个版本是一个维护的发布版,主要是一些修复以及将Spring的依赖提升至4.1.7(包含重要的安全修复)。
官方建议所有的Spring Boot用户升级这个版本。
项目首页 | 源