题目描述
给出 $n$ 和 $p$ ,求 $(\sum\limits_{i=1}^n\sum\limits_{j=1}^nij\gcd(i,j))\mod p$ 。
$n\le 10^{10}$ 。
题解
欧拉函数(欧拉反演)+杜教筛
推式子:
$$\begin{align}&\sum\limits_{i=1}^n\sum\limits_{j=1}^nij\gcd(i,j)\\=&\sum\limits_{i=1}^n\sum\limits_{j=1}^nij\sum\limits_{d|\gcd(i,j)}\varphi(d)\\=&\sum\limits_{i=1}^n\sum\limits_{j=1}^nij\sum\limits_{d|i,d|j}\varphi(d)\\=&\sum\limits_{d=1}^n\varphi(d)\sum\limits_{i=1}^{\lfloor\frac nd\rfloor}id\sum\limits_{j=1}^{\lfloor\frac nd\rfloor}jd\\=&\sum\limits_{d=1}^nd^2\varphi(d)(\sum\limits_{i=1}^{\lfloor\frac nd\rfloor}i)^2\\=&\sum\limits_{d=1}^nd^2\varphi(d)(\frac{\lfloor\frac nd\rfloor(\lfloor\frac nd\rfloor+1)}2)^2\end{align}$$
对 $\lfloor\frac nd\rfloor$ 分块处理,只需要求出 $f(n)=n^2\varphi(n)$ 的前缀和即可。
显然这是一个积性函数,然而 $n$ 有 $10^{10}$ 之大,不能线性筛。
考虑杜教筛。设 $g(n)=n^2$ ,那么有:
$$\begin{align}&(f·g)(n)\\=&\sum\limits_{d|n}f(d)g(\frac nd)\\=&\sum\limits_{d|n}d^2\varphi(d)·(\frac nd)^2\\=&n^2\sum\limits_{d|n}\varphi(d)\\=&n^3\end{align}$$
所以:
$$\begin{align}&\sum\limits_{i=1}^ni^3\\=&\sum\limits_{i=1}^n(f·g)(i)\\=&\sum\limits_{i=1}^n\sum\limits_{d|i}f(d)·g(\frac id)\\=&\sum\limits_{i=1}^n\sum\limits_{d|i}f(\frac id)g(d)\\=&\sum\limits_{d=1}^ng(d)\sum\limits_{i=1}^{\lfloor\frac nd\rfloor}f(i)\\=&\sum\limits_{d=1}^nd^2S(\lfloor\frac nd\rfloor)\end{align}$$
故有:
$$S(n)=\sum\limits_{i=1}^ni^3-\sum\limits_{i=2}^ni^2S(\lfloor\frac nd\rfloor)$$
线性筛预处理出 $n^{\frac 23}$ 以内的 $S(i)$ ,对超过 $n^{\frac 23}$ 的部分进行杜教筛即可。
可能需要用到的公式:
$$\sum\limits_{i=1}^ni^2=\frac{n(n+1)(2n+1)}6\\\sum\limits_{i=1}^ni^3=\frac{n^2(n+1)^2}4$$
时间复杂度 $O(n^{\frac 23})$ ,这里偷懒使用map,复杂度多一个 $\log$ 。
#include