1.1 注意
1. 注意舍入方式(0.5 的舍入方向);防止输出-0.
2. 几何题注意多测试不对称数据.
3. 整数几何注意 xmult 和 dmult 是否会出界;
符点几何注意 eps 的使用.
4. 避免使用斜率;注意除数是否会为 0.
5. 公式一定要化简后再代入.
6. 判断同一个 2*PI 域内两角度差应该是
abs(a1-a2)
相等应该是
abs(a1-a2)
7. 需要的话尽量使用 atan2,注意:atan2(0,0)=0,
atan2(1,0)=pi/2,atan2(-1,0)=-pi/2,atan2(0,1)=0,atan2(0,-1)=pi.
8. cross product = |u|*|v|*sin(a)
dot product = |u|*|v|*cos(a)
9. (P1-P0)x(P2-P0)结果的意义:
正:
负:
0 :
10. 误差限缺省使用 1e-8!
1.2 几何公式
三角形:1. 半周长 P=(a+b+c)/2
2. 面积 S=aHa/2=absin(C)/2=sqrt(P(P-a)(P-b)(P-c))
3. 中线 Ma=sqrt(2(b^2+c^2)-a^2)/2=sqrt(b^2+c^2+2bccos(A))/2
4. 角平分线 Ta=sqrt(bc((b+c)^2-a^2))/(b+c)=2bccos(A/2)/(b+c)
5. 高线 Ha=bsin(C)=csin(B)=sqrt(b^2-((a^2+b^2-c^2)/(2a))^2)
6. 内切圆半径 r=S/P=asin(B/2)sin(C/2)/sin((B+C)/2)
=4Rsin(A/2)sin(B/2)sin(C/2)=sqrt((P-a)(P-b)(P-c)/P)
=Ptan(A/2)tan(B/2)tan(C/2)
7. 外接圆半径 R=abc/(4S)=a/(2sin(A))=b/(2sin(B))=c/(2sin(C))
四边形:
D1,D2 为对角线,M 对角线中点连线,A 为对角线夹角
1. a^2+b^2+c^2+d^2=D1^2+D2^2+4M^2
2. S=D1D2sin(A)/2
(以下对圆的内接四边形)
3. ac+bd=D1D2
4. S=sqrt((P-a)(P-b)(P-c)(P-d)),P 为半周长
正 n 边形:
R 为外接圆半径,r 为内切圆半径
1. 中心角 A=2PI/n
2. 内角 C=(n-2)PI/n
3. 边长 a=2sqrt(R^2-r^2)=2Rsin(A/2)=2rtan(A/2)
4. 面积 S=nar/2=nr^2tan(A/2)=nR^2sin(A)/2=na^2/(4tan(A/2))
圆:
1. 弧长 l=rA
2. 弦长 a=2sqrt(2hr-h^2)=2rsin(A/2)
3. 弓形高 h=r-sqrt(r^2-a^2/4)=r(1-cos(A/2))=atan(A/4)/2
4. 扇形面积 S1=rl/2=r^2A/2
5. 弓形面积 S2=(rl-a(r-h))/2=r^2(A-sin(A))/2
棱柱:
1. 体积 V=Ah,A 为底面积,h 为高
2. 侧面积 S=lp,l 为棱长,p 为直截面周长
3. 全面积 T=S+2A
棱锥:
1. 体积 V=Ah/3,A 为底面积,h 为高
(以下对正棱锥)
2. 侧面积 S=lp/2,l 为斜高,p 为底面周长
3. 全面积 T=S+A
棱台:
1. 体积 V=(A1+A2+sqrt(A1A2))h/3,A1.A2 为上下底面积,h 为高
(以下为正棱台)
2. 侧面积 S=(p1+p2)l/2,p1.p2 为上下底面周长,l 为斜高
3. 全面积 T=S+A1+A2
27
圆柱:
1. 侧面积 S=2PIrh
2. 全面积 T=2PIr(h+r)
3. 体积 V=PIr^2h
圆锥:
1. 母线 l=sqrt(h^2+r^2)
2. 侧面积 S=PIrl
3. 全面积 T=PIr(l+r)
4. 体积 V=PIr^2h/3
圆台:
1. 母线 l=sqrt(h^2+(r1-r2)^2)
2. 侧面积 S=PI(r1+r2)l
3. 全面积 T=PIr1(l+r1)+PIr2(l+r2)
4. 体积 V=PI(r1^2+r2^2+r1r2)h/3
球:
1. 全面积 T=4PIr^2
2. 体积 V=4PIr^3/3
球台:
1. 侧面积 S=2PIrh
2. 全面积 T=PI(2rh+r1^2+r2^2)
3. 体积 V=PIh(3(r1^2+r2^2)+h^2)/6
球扇形:
1. 全面积 T=PIr(2h+r0),h 为球冠高,r0 为球冠底面半径
2. 体积 V=2PIr^2h/3
1.3、多边形
#include#include #define MAXN 1000 #define offset 10000 #define eps 1e-8 #define zero(x) (((x)>0?(x):-(x)) #define _sign(x) ((x)>eps?1:((x)<-eps?2:0)) struct point{double x,y;}; struct line{point a,b;}; double xmult(point p1,point p2,point p0){ return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y); 28 } //判定凸多边形,顶点按顺时针或逆时针给出,允许相邻边共线 int is_convex(int n,point* p){ int i,s[3]={1,1,1}; for (i=0;i 1]|s[2];i++) s[_sign(xmult(p[(i+1)%n],p[(i+2)%n],p[i]))]=0; return s[1]|s[2]; } //判定凸多边形,顶点按顺时针或逆时针给出,不允许相邻边共线 int is_convex_v2(int n,point* p){ int i,s[3]={1,1,1}; for (i=0;i 0]&&s[1]|s[2];i++) s[_sign(xmult(p[(i+1)%n],p[(i+2)%n],p[i]))]=0; return s[0]&&s[1]|s[2]; } //判点在凸多边形内或多边形边上,顶点按顺时针或逆时针给出 int inside_convex(point q,int n,point* p){ int i,s[3]={1,1,1}; for (i=0;i 1]|s[2];i++) s[_sign(xmult(p[(i+1)%n],q,p[i]))]=0; return s[1]|s[2]; } //判点在凸多边形内,顶点按顺时针或逆时针给出,在多边形边上返回 0 int inside_convex_v2(point q,int n,point* p){ int i,s[3]={1,1,1}; for (i=0;i 0]&&s[1]|s[2];i++) s[_sign(xmult(p[(i+1)%n],q,p[i]))]=0; return s[0]&&s[1]|s[2]; } //判点在任意多边形内,顶点按顺时针或逆时针给出 //on_edge 表示点在多边形边上时的返回值,offset 为多边形坐标上限 int inside_polygon(point q,int n,point* p,int on_edge=1){ point q2; int i=0,count; while (i<n) for (count=i=0,q2.x=rand()+offset,q2.y=rand()+offset;i ) if (zero(xmult(q,p[i],p[(i+1)%n]))&&(p[i].x-q.x)*(p[(i+1)%n].x-q.x) 1)% n].y-q.y)<eps) 29 return on_edge; else if (zero(xmult(q,q2,p[i]))) break; else if (xmult(q,p[i],q2)*xmult(q,p[(i+1)%n],q2)<-eps&&xmult(p[i],q,p[(i+1)%n])*xmult(p[i],q2,p[(i+1) %n])<-eps) count++; return count&1; } inline int opposite_side(point p1,point p2,point l1,point l2){ return xmult(l1,p1,l2)*xmult(l1,p2,l2)<-eps; } inline int dot_online_in(point p,point l1,point l2){ return zero(xmult(p,l1,l2))&&(l1.x-p.x)*(l2.x-p.x) eps; } //判线段在任意多边形内,顶点按顺时针或逆时针给出,与边界相交返回 1 int inside_polygon(point l1,point l2,int n,point* p){ point t[MAXN],tt; int i,j,k=0; if (!inside_polygon(l1,n,p)||!inside_polygon(l2,n,p)) return 0; for (i=0;i ) if (opposite_side(l1,l2,p[i],p[(i+1)%n])&&opposite_side(p[i],p[(i+1)%n],l1,l2)) return 0; else if (dot_online_in(l1,p[i],p[(i+1)%n])) t[k++]=l1; else if (dot_online_in(l2,p[i],p[(i+1)%n])) t[k++]=l2; else if (dot_online_in(p[i],l1,l2)) t[k++]=p[i]; for (i=0;i ) for (j=i+1;j ){ tt.x=(t[i].x+t[j].x)/2; tt.y=(t[i].y+t[j].y)/2; if (!inside_polygon(tt,n,p)) return 0; } return 1; } point intersection(line u,line v){ 30 point ret=u.a; double t=((u.a.x-v.a.x)*(v.a.y-v.b.y)-(u.a.y-v.a.y)*(v.a.x-v.b.x)) /((u.a.x-u.b.x)*(v.a.y-v.b.y)-(u.a.y-u.b.y)*(v.a.x-v.b.x)); ret.x+=(u.b.x-u.a.x)*t; ret.y+=(u.b.y-u.a.y)*t; return ret; } point barycenter(point a,point b,point c){ line u,v; u.a.x=(a.x+b.x)/2; u.a.y=(a.y+b.y)/2; u.b=c; v.a.x=(a.x+c.x)/2; v.a.y=(a.y+c.y)/2; v.b=b; return intersection(u,v); } //多边形重心 point barycenter(int n,point* p){ point ret,t; double t1=0,t2; int i; ret.x=ret.y=0; for (i=1;i 1;i++) if (fabs(t2=xmult(p[0],p[i],p[i+1]))>eps){ t=barycenter(p[0],p[i],p[i+1]); ret.x+=t.x*t2; ret.y+=t.y*t2; t1+=t2; } if (fabs(t1)>eps) ret.x/=t1,ret.y/=t1; return ret; }
1.4 多边形切割
//多边形切割 //可用于半平面交 #define MAXN 100 #define eps 1e-8 #define zero(x) (((x)>0?(x):-(x))31 struct point{double x,y;}; double xmult(point p1,point p2,point p0){ return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y); } int same_side(point p1,point p2,point l1,point l2){ return xmult(l1,p1,l2)*xmult(l1,p2,l2)>eps; } point intersection(point u1,point u2,point v1,point v2){ point ret=u1; double t=((u1.x-v1.x)*(v1.y-v2.y)-(u1.y-v1.y)*(v1.x-v2.x)) /((u1.x-u2.x)*(v1.y-v2.y)-(u1.y-u2.y)*(v1.x-v2.x)); ret.x+=(u2.x-u1.x)*t; ret.y+=(u2.y-u1.y)*t; return ret; } //将多边形沿 l1,l2 确定的直线切割在 side 侧切割,保证 l1,l2,side 不共线 void polygon_cut(int& n,point* p,point l1,point l2,point side){ point pp[100]; int m=0,i; for (i=0;i ){ if (same_side(p[i],side,l1,l2)) pp[m++]=p[i]; if (!same_side(p[i],p[(i+1)%n],l1,l2)&&!(zero(xmult(p[i],l1,l2))&&zero(xmult(p[(i+1)%n],l1,l2)))) pp[m++]=intersection(p[i],p[(i+1)%n],l1,l2); } for (n=i=0;i ) if (!i||!zero(pp[i].x-pp[i-1].x)||!zero(pp[i].y-pp[i-1].y)) p[n++]=pp[i]; if (zero(p[n-1].x-p[0].x)&&zero(p[n-1].y-p[0].y)) n--; if (n<3) n=0; }
1.5 浮点函数
//浮点几何函数库 #include#define eps 1e-8 32 #define zero(x) (((x)>0?(x):-(x)) struct point{double x,y;}; struct line{point a,b;}; //计算 cross product (P1-P0)x(P2-P0) double xmult(point p1,point p2,point p0){ return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y); } double xmult(double x1,double y1,double x2,double y2,double x0,double y0){ return (x1-x0)*(y2-y0)-(x2-x0)*(y1-y0); } //计算 dot product (P1-P0).(P2-P0) double dmult(point p1,point p2,point p0){ return (p1.x-p0.x)*(p2.x-p0.x)+(p1.y-p0.y)*(p2.y-p0.y); } double dmult(double x1,double y1,double x2,double y2,double x0,double y0){ return (x1-x0)*(x2-x0)+(y1-y0)*(y2-y0); } //两点距离 double distance(point p1,point p2){ return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y)); } double distance(double x1,double y1,double x2,double y2){ return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2)); } //判三点共线 int dots_inline(point p1,point p2,point p3){ return zero(xmult(p1,p2,p3)); } int dots_inline(double x1,double y1,double x2,double y2,double x3,double y3){ return zero(xmult(x1,y1,x2,y2,x3,y3)); } //判点是否在线段上,包括端点 int dot_online_in(point p,line l){ return zero(xmult(p,l.a,l.b))&&(l.a.x-p.x)*(l.b.x-p.x) eps; } int dot_online_in(point p,point l1,point l2){ return zero(xmult(p,l1,l2))&&(l1.x-p.x)*(l2.x-p.x) eps; } int dot_online_in(double x,double y,double x1,double y1,double x2,double y2){ 33 return zero(xmult(x,y,x1,y1,x2,y2))&&(x1-x)*(x2-x) eps; } //判点是否在线段上,不包括端点 int dot_online_ex(point p,line l){ return dot_online_in(p,l)&&(!zero(p.x-l.a.x)||!zero(p.y-l.a.y))&&(!zero(p.x-l.b.x)||!zero(p.y-l.b.y)); } int dot_online_ex(point p,point l1,point l2){ return dot_online_in(p,l1,l2)&&(!zero(p.x-l1.x)||!zero(p.y-l1.y))&&(!zero(p.x-l2.x)||!zero(p.y-l2.y)); } int dot_online_ex(double x,double y,double x1,double y1,double x2,double y2){ return dot_online_in(x,y,x1,y1,x2,y2)&&(!zero(x-x1)||!zero(y-y1))&&(!zero(x-x2)||!zero(y-y2)); } //判两点在线段同侧,点在线段上返回 0 int same_side(point p1,point p2,line l){ return xmult(l.a,p1,l.b)*xmult(l.a,p2,l.b)>eps; } int same_side(point p1,point p2,point l1,point l2){ return xmult(l1,p1,l2)*xmult(l1,p2,l2)>eps; } //判两点在线段异侧,点在线段上返回 0 int opposite_side(point p1,point p2,line l){ return xmult(l.a,p1,l.b)*xmult(l.a,p2,l.b)<-eps; } int opposite_side(point p1,point p2,point l1,point l2){ return xmult(l1,p1,l2)*xmult(l1,p2,l2)<-eps; } //判两直线平行 int parallel(line u,line v){ return zero((u.a.x-u.b.x)*(v.a.y-v.b.y)-(v.a.x-v.b.x)*(u.a.y-u.b.y)); } int parallel(point u1,point u2,point v1,point v2){ return zero((u1.x-u2.x)*(v1.y-v2.y)-(v1.x-v2.x)*(u1.y-u2.y)); } //判两直线垂直 int perpendicular(line u,line v){ return zero((u.a.x-u.b.x)*(v.a.x-v.b.x)+(u.a.y-u.b.y)*(v.a.y-v.b.y)); 34 } int perpendicular(point u1,point u2,point v1,point v2){ return zero((u1.x-u2.x)*(v1.x-v2.x)+(u1.y-u2.y)*(v1.y-v2.y)); } //判两线段相交,包括端点和部分重合 int intersect_in(line u,line v){ if (!dots_inline(u.a,u.b,v.a)||!dots_inline(u.a,u.b,v.b)) return !same_side(u.a,u.b,v)&&!same_side(v.a,v.b,u); return dot_online_in(u.a,v)||dot_online_in(u.b,v)||dot_online_in(v.a,u)||dot_online_in(v.b,u); } int intersect_in(point u1,point u2,point v1,point v2){ if (!dots_inline(u1,u2,v1)||!dots_inline(u1,u2,v2)) return !same_side(u1,u2,v1,v2)&&!same_side(v1,v2,u1,u2); return dot_online_in(u1,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(v1,u1,u2)||dot_online_in(v2,u1,u 2); } //判两线段相交,不包括端点和部分重合 int intersect_ex(line u,line v){ return opposite_side(u.a,u.b,v)&&opposite_side(v.a,v.b,u); } int intersect_ex(point u1,point u2,point v1,point v2){ return opposite_side(u1,u2,v1,v2)&&opposite_side(v1,v2,u1,u2); } //计算两直线交点,注意事先判断直线是否平行! //线段交点请另外判线段相交(同时还是要判断是否平行!) point intersection(line u,line v){ point ret=u.a; double t=((u.a.x-v.a.x)*(v.a.y-v.b.y)-(u.a.y-v.a.y)*(v.a.x-v.b.x)) /((u.a.x-u.b.x)*(v.a.y-v.b.y)-(u.a.y-u.b.y)*(v.a.x-v.b.x)); ret.x+=(u.b.x-u.a.x)*t; ret.y+=(u.b.y-u.a.y)*t; return ret; } point intersection(point u1,point u2,point v1,point v2){ point ret=u1; double t=((u1.x-v1.x)*(v1.y-v2.y)-(u1.y-v1.y)*(v1.x-v2.x)) /((u1.x-u2.x)*(v1.y-v2.y)-(u1.y-u2.y)*(v1.x-v2.x)); ret.x+=(u2.x-u1.x)*t; ret.y+=(u2.y-u1.y)*t; return ret; 35 } //点到直线上的最近点 point ptoline(point p,line l){ point t=p; t.x+=l.a.y-l.b.y,t.y+=l.b.x-l.a.x; return intersection(p,t,l.a,l.b); } point ptoline(point p,point l1,point l2){ point t=p; t.x+=l1.y-l2.y,t.y+=l2.x-l1.x; return intersection(p,t,l1,l2); } //点到直线距离 double disptoline(point p,line l){ return fabs(xmult(p,l.a,l.b))/distance(l.a,l.b); } double disptoline(point p,point l1,point l2){ return fabs(xmult(p,l1,l2))/distance(l1,l2); } double disptoline(double x,double y,double x1,double y1,double x2,double y2){ return fabs(xmult(x,y,x1,y1,x2,y2))/distance(x1,y1,x2,y2); } //点到线段上的最近点 point ptoseg(point p,line l){ point t=p; t.x+=l.a.y-l.b.y,t.y+=l.b.x-l.a.x; if (xmult(l.a,t,p)*xmult(l.b,t,p)>eps) return distance(p,l.a) l.a:l.b; return intersection(p,t,l.a,l.b); } point ptoseg(point p,point l1,point l2){ point t=p; t.x+=l1.y-l2.y,t.y+=l2.x-l1.x; if (xmult(l1,t,p)*xmult(l2,t,p)>eps) return distance(p,l1) l1:l2; return intersection(p,t,l1,l2); } //点到线段距离 double disptoseg(point p,line l){ point t=p; t.x+=l.a.y-l.b.y,t.y+=l.b.x-l.a.x; if (xmult(l.a,t,p)*xmult(l.b,t,p)>eps) return distance(p,l.a) distance(p,l.a):distance(p,l.b); return fabs(xmult(p,l.a,l.b))/distance(l.a,l.b); } double disptoseg(point p,point l1,point l2){ point t=p; t.x+=l1.y-l2.y,t.y+=l2.x-l1.x; if (xmult(l1,t,p)*xmult(l2,t,p)>eps) return distance(p,l1) distance(p,l1):distance(p,l2); return fabs(xmult(p,l1,l2))/distance(l1,l2); } //矢量 V 以 P 为顶点逆时针旋转 angle 并放大 scale 倍 point rotate(point v,point p,double angle,double scale){ point ret=p; v.x-=p.x,v.y-=p.y; p.x=scale*cos(angle); p.y=scale*sin(angle); ret.x+=v.x*p.x-v.y*p.y; ret.y+=v.x*p.y+v.y*p.x; return ret; }
1.6 面积
#includestruct point{double x,y;}; //计算 cross product (P1-P0)x(P2-P0) double xmult(point p1,point p2,point p0){ return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y); } double xmult(double x1,double y1,double x2,double y2,double x0,double y0){ return (x1-x0)*(y2-y0)-(x2-x0)*(y1-y0); } //计算三角形面积,输入三顶点 double area_triangle(point p1,point p2,point p3){ return fabs(xmult(p1,p2,p3))/2; } double area_triangle(double x1,double y1,double x2,double y2,double x3,double y3){ return fabs(xmult(x1,y1,x2,y2,x3,y3))/2; } //计算三角形面积,输入三边长 double area_triangle(double a,double b,double c){ double s=(a+b+c)/2; return sqrt(s*(s-a)*(s-b)*(s-c)); } //计算多边形面积,顶点按顺时针或逆时针给出 double area_polygon(int n,point* p){ double s1=0,s2=0; int i; for (i=0;i ) s1+=p[(i+1)%n].y*p[i].x,s2+=p[(i+1)%n].y*p[(i+2)%n].x; return fabs(s1-s2)/2; }
1.7 球面
#includeconst double pi=acos(-1); //计算圆心角 lat 表示纬度,-90<=w<=90,lng 表示经度 //返回两点所在大圆劣弧对应圆心角,0<=angle<=pi double angle(double lng1,double lat1,double lng2,double lat2){ double dlng=fabs(lng1-lng2)*pi/180; while (dlng>=pi+pi) dlng-=pi+pi; if (dlng>pi) dlng=pi+pi-dlng; lat1*=pi/180,lat2*=pi/180; return acos(cos(lat1)*cos(lat2)*cos(dlng)+sin(lat1)*sin(lat2)); } //计算距离,r 为球半径 double line_dist(double r,double lng1,double lat1,double lng2,double lat2){ double dlng=fabs(lng1-lng2)*pi/180; while (dlng>=pi+pi) dlng-=pi+pi; if (dlng>pi) dlng=pi+pi-dlng; lat1*=pi/180,lat2*=pi/180; return r*sqrt(2-2*(cos(lat1)*cos(lat2)*cos(dlng)+sin(lat1)*sin(lat2))); } //计算球面距离,r 为球半径 inline double sphere_dist(double r,double lng1,double lat1,double lng2,double lat2){ return r*angle(lng1,lat1,lng2,lat2); }
1.8 三角形
#includestruct point{double x,y;}; struct line{point a,b;}; double distance(point p1,point p2){ return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y)); } point intersection(line u,line v){ point ret=u.a; double t=((u.a.x-v.a.x)*(v.a.y-v.b.y)-(u.a.y-v.a.y)*(v.a.x-v.b.x)) /((u.a.x-u.b.x)*(v.a.y-v.b.y)-(u.a.y-u.b.y)*(v.a.x-v.b.x)); ret.x+=(u.b.x-u.a.x)*t; ret.y+=(u.b.y-u.a.y)*t; return ret; } //外心 point circumcenter(point a,point b,point c){ line u,v; u.a.x=(a.x+b.x)/2; u.a.y=(a.y+b.y)/2; u.b.x=u.a.x-a.y+b.y; u.b.y=u.a.y+a.x-b.x; v.a.x=(a.x+c.x)/2; v.a.y=(a.y+c.y)/2; v.b.x=v.a.x-a.y+c.y; v.b.y=v.a.y+a.x-c.x; return intersection(u,v); } //内心 point incenter(point a,point b,point c){ line u,v; double m,n; u.a=a; m=atan2(b.y-a.y,b.x-a.x); 39 n=atan2(c.y-a.y,c.x-a.x); u.b.x=u.a.x+cos((m+n)/2); u.b.y=u.a.y+sin((m+n)/2); v.a=b; m=atan2(a.y-b.y,a.x-b.x); n=atan2(c.y-b.y,c.x-b.x); v.b.x=v.a.x+cos((m+n)/2); v.b.y=v.a.y+sin((m+n)/2); return intersection(u,v); } //垂心 point perpencenter(point a,point b,point c){ line u,v; u.a=c; u.b.x=u.a.x-a.y+b.y; u.b.y=u.a.y+a.x-b.x; v.a=b; v.b.x=v.a.x-a.y+c.y; v.b.y=v.a.y+a.x-c.x; return intersection(u,v); } //重心 //到三角形三顶点距离的平方和最小的点 //三角形内到三边距离之积最大的点 point barycenter(point a,point b,point c){ line u,v; u.a.x=(a.x+b.x)/2; u.a.y=(a.y+b.y)/2; u.b=c; v.a.x=(a.x+c.x)/2; v.a.y=(a.y+c.y)/2; v.b=b; return intersection(u,v); } //费马点 //到三角形三顶点距离之和最小的点 point fermentpoint(point a,point b,point c){ point u,v; double step=fabs(a.x)+fabs(a.y)+fabs(b.x)+fabs(b.y)+fabs(c.x)+fabs(c.y); int i,j,k; u.x=(a.x+b.x+c.x)/3; u.y=(a.y+b.y+c.y)/3; while (step>1e-10) for (k=0;k<10;step/=2,k++) for (i=-1;i<=1;i++) for (j=-1;j<=1;j++){ v.x=u.x+step*i; v.y=u.y+step*j; if (distance(u,a)+distance(u,b)+distance(u,c)>distance(v,a)+distance(v,b)+distance(v,c)) u=v; } return u; }
1.9 三维几何
//三维几何函数库 #include#define eps 1e-8 #define zero(x) (((x)>0?(x):-(x)) struct point3{double x,y,z;}; struct line3{point3 a,b;}; struct plane3{point3 a,b,c;}; //计算 cross product U x V point3 xmult(point3 u,point3 v){ point3 ret; ret.x=u.y*v.z-v.y*u.z; ret.y=u.z*v.x-u.x*v.z; ret.z=u.x*v.y-u.y*v.x; return ret; } //计算 dot product U . V double dmult(point3 u,point3 v){ return u.x*v.x+u.y*v.y+u.z*v.z; } //矢量差 U - V point3 subt(point3 u,point3 v){ point3 ret; ret.x=u.x-v.x; ret.y=u.y-v.y; ret.z=u.z-v.z; 41 return ret; } //取平面法向量 point3 pvec(plane3 s){ return xmult(subt(s.a,s.b),subt(s.b,s.c)); } point3 pvec(point3 s1,point3 s2,point3 s3){ return xmult(subt(s1,s2),subt(s2,s3)); } //两点距离,单参数取向量大小 double distance(point3 p1,point3 p2){ return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y)+(p1.z-p2.z)*(p1.z-p2.z)); } //向量大小 double vlen(point3 p){ return sqrt(p.x*p.x+p.y*p.y+p.z*p.z); } //判三点共线 int dots_inline(point3 p1,point3 p2,point3 p3){ return vlen(xmult(subt(p1,p2),subt(p2,p3)))<eps; } //判四点共面 int dots_onplane(point3 a,point3 b,point3 c,point3 d){ return zero(dmult(pvec(a,b,c),subt(d,a))); } //判点是否在线段上,包括端点和共线 int dot_online_in(point3 p,line3 l){ return zero(vlen(xmult(subt(p,l.a),subt(p,l.b))))&&(l.a.x-p.x)*(l.b.x-p.x) (l.a.y-p.y)*(l.b.y-p.y) eps; } int dot_online_in(point3 p,point3 l1,point3 l2){ return zero(vlen(xmult(subt(p,l1),subt(p,l2))))&&(l1.x-p.x)*(l2.x-p.x) (l1.y-p.y)*(l2.y-p.y) eps; } //判点是否在线段上,不包括端点 int dot_online_ex(point3 p,line3 l){ return dot_online_in(p,l)&&(!zero(p.x-l.a.x)||!zero(p.y-l.a.y)||!zero(p.z-l.a.z))&& 42 (!zero(p.x-l.b.x)||!zero(p.y-l.b.y)||!zero(p.z-l.b.z)); } int dot_online_ex(point3 p,point3 l1,point3 l2){ return dot_online_in(p,l1,l2)&&(!zero(p.x-l1.x)||!zero(p.y-l1.y)||!zero(p.z-l1.z))&& (!zero(p.x-l2.x)||!zero(p.y-l2.y)||!zero(p.z-l2.z)); } //判点是否在空间三角形上,包括边界,三点共线无意义 int dot_inplane_in(point3 p,plane3 s){ return zero(vlen(xmult(subt(s.a,s.b),subt(s.a,s.c)))-vlen(xmult(subt(p,s.a),subt(p,s.b)))- vlen(xmult(subt(p,s.b),subt(p,s.c)))-vlen(xmult(subt(p,s.c),subt(p,s.a)))); } int dot_inplane_in(point3 p,point3 s1,point3 s2,point3 s3){ return zero(vlen(xmult(subt(s1,s2),subt(s1,s3)))-vlen(xmult(subt(p,s1),subt(p,s2)))- vlen(xmult(subt(p,s2),subt(p,s3)))-vlen(xmult(subt(p,s3),subt(p,s1)))); } //判点是否在空间三角形上,不包括边界,三点共线无意义 int dot_inplane_ex(point3 p,plane3 s){ return dot_inplane_in(p,s)&&vlen(xmult(subt(p,s.a),subt(p,s.b)))>eps&& vlen(xmult(subt(p,s.b),subt(p,s.c)))>eps&&vlen(xmult(subt(p,s.c),subt(p,s.a)))>eps; } int dot_inplane_ex(point3 p,point3 s1,point3 s2,point3 s3){ return dot_inplane_in(p,s1,s2,s3)&&vlen(xmult(subt(p,s1),subt(p,s2)))>eps&& vlen(xmult(subt(p,s2),subt(p,s3)))>eps&&vlen(xmult(subt(p,s3),subt(p,s1)))>eps; } //判两点在线段同侧,点在线段上返回 0,不共面无意义 int same_side(point3 p1,point3 p2,line3 l){ return dmult(xmult(subt(l.a,l.b),subt(p1,l.b)),xmult(subt(l.a,l.b),subt(p2,l.b)))>eps; } int same_side(point3 p1,point3 p2,point3 l1,point3 l2){ return dmult(xmult(subt(l1,l2),subt(p1,l2)),xmult(subt(l1,l2),subt(p2,l2)))>eps; } //判两点在线段异侧,点在线段上返回 0,不共面无意义 int opposite_side(point3 p1,point3 p2,line3 l){ return dmult(xmult(subt(l.a,l.b),subt(p1,l.b)),xmult(subt(l.a,l.b),subt(p2,l.b)))<-eps; } int opposite_side(point3 p1,point3 p2,point3 l1,point3 l2){ return dmult(xmult(subt(l1,l2),subt(p1,l2)),xmult(subt(l1,l2),subt(p2,l2)))<-eps; } //判两点在平面同侧,点在平面上返回 0 int same_side(point3 p1,point3 p2,plane3 s){ return dmult(pvec(s),subt(p1,s.a))*dmult(pvec(s),subt(p2,s.a))>eps; } int same_side(point3 p1,point3 p2,point3 s1,point3 s2,point3 s3){ return dmult(pvec(s1,s2,s3),subt(p1,s1))*dmult(pvec(s1,s2,s3),subt(p2,s1))>eps; } //判两点在平面异侧,点在平面上返回 0 int opposite_side(point3 p1,point3 p2,plane3 s){ return dmult(pvec(s),subt(p1,s.a))*dmult(pvec(s),subt(p2,s.a))<-eps; } int opposite_side(point3 p1,point3 p2,point3 s1,point3 s2,point3 s3){ return dmult(pvec(s1,s2,s3),subt(p1,s1))*dmult(pvec(s1,s2,s3),subt(p2,s1))<-eps; } //判两直线平行 int parallel(line3 u,line3 v){ return vlen(xmult(subt(u.a,u.b),subt(v.a,v.b)))<eps; } int parallel(point3 u1,point3 u2,point3 v1,point3 v2){ return vlen(xmult(subt(u1,u2),subt(v1,v2)))<eps; } //判两平面平行 int parallel(plane3 u,plane3 v){ return vlen(xmult(pvec(u),pvec(v)))<eps; } int parallel(point3 u1,point3 u2,point3 u3,point3 v1,point3 v2,point3 v3){ return vlen(xmult(pvec(u1,u2,u3),pvec(v1,v2,v3)))<eps; } //判直线与平面平行 int parallel(line3 l,plane3 s){ return zero(dmult(subt(l.a,l.b),pvec(s))); } int parallel(point3 l1,point3 l2,point3 s1,point3 s2,point3 s3){ return zero(dmult(subt(l1,l2),pvec(s1,s2,s3))); } //判两直线垂直 int perpendicular(line3 u,line3 v){ return zero(dmult(subt(u.a,u.b),subt(v.a,v.b))); } int perpendicular(point3 u1,point3 u2,point3 v1,point3 v2){ return zero(dmult(subt(u1,u2),subt(v1,v2))); } //判两平面垂直 int perpendicular(plane3 u,plane3 v){ return zero(dmult(pvec(u),pvec(v))); } int perpendicular(point3 u1,point3 u2,point3 u3,point3 v1,point3 v2,point3 v3){ return zero(dmult(pvec(u1,u2,u3),pvec(v1,v2,v3))); } //判直线与平面平行 int perpendicular(line3 l,plane3 s){ return vlen(xmult(subt(l.a,l.b),pvec(s)))<eps; } int perpendicular(point3 l1,point3 l2,point3 s1,point3 s2,point3 s3){ return vlen(xmult(subt(l1,l2),pvec(s1,s2,s3)))<eps; } //判两线段相交,包括端点和部分重合 int intersect_in(line3 u,line3 v){ if (!dots_onplane(u.a,u.b,v.a,v.b)) return 0; if (!dots_inline(u.a,u.b,v.a)||!dots_inline(u.a,u.b,v.b)) return !same_side(u.a,u.b,v)&&!same_side(v.a,v.b,u); return dot_online_in(u.a,v)||dot_online_in(u.b,v)||dot_online_in(v.a,u)||dot_online_in(v.b,u); } int intersect_in(point3 u1,point3 u2,point3 v1,point3 v2){ if (!dots_onplane(u1,u2,v1,v2)) return 0; if (!dots_inline(u1,u2,v1)||!dots_inline(u1,u2,v2)) return !same_side(u1,u2,v1,v2)&&!same_side(v1,v2,u1,u2); return dot_online_in(u1,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(v1,u1,u2)||dot_online_in(v2,u1,u 2); } //判两线段相交,不包括端点和部分重合 int intersect_ex(line3 u,line3 v){ return dots_onplane(u.a,u.b,v.a,v.b)&&opposite_side(u.a,u.b,v)&&opposite_side(v.a,v.b,u); } int intersect_ex(point3 u1,point3 u2,point3 v1,point3 v2){ return dots_onplane(u1,u2,v1,v2)&&opposite_side(u1,u2,v1,v2)&&opposite_side(v1,v2,u1,u2); } //判线段与空间三角形相交,包括交于边界和(部分)包含 int intersect_in(line3 l,plane3 s){ return !same_side(l.a,l.b,s)&&!same_side(s.a,s.b,l.a,l.b,s.c)&& !same_side(s.b,s.c,l.a,l.b,s.a)&&!same_side(s.c,s.a,l.a,l.b,s.b); } int intersect_in(point3 l1,point3 l2,point3 s1,point3 s2,point3 s3){ return !same_side(l1,l2,s1,s2,s3)&&!same_side(s1,s2,l1,l2,s3)&& !same_side(s2,s3,l1,l2,s1)&&!same_side(s3,s1,l1,l2,s2); } //判线段与空间三角形相交,不包括交于边界和(部分)包含 int intersect_ex(line3 l,plane3 s){ return opposite_side(l.a,l.b,s)&&opposite_side(s.a,s.b,l.a,l.b,s.c)&& opposite_side(s.b,s.c,l.a,l.b,s.a)&&opposite_side(s.c,s.a,l.a,l.b,s.b); } int intersect_ex(point3 l1,point3 l2,point3 s1,point3 s2,point3 s3){ return opposite_side(l1,l2,s1,s2,s3)&&opposite_side(s1,s2,l1,l2,s3)&& opposite_side(s2,s3,l1,l2,s1)&&opposite_side(s3,s1,l1,l2,s2); } //计算两直线交点,注意事先判断直线是否共面和平行! //线段交点请另外判线段相交(同时还是要判断是否平行!) point3 intersection(line3 u,line3 v){ point3 ret=u.a; double t=((u.a.x-v.a.x)*(v.a.y-v.b.y)-(u.a.y-v.a.y)*(v.a.x-v.b.x)) /((u.a.x-u.b.x)*(v.a.y-v.b.y)-(u.a.y-u.b.y)*(v.a.x-v.b.x)); ret.x+=(u.b.x-u.a.x)*t; ret.y+=(u.b.y-u.a.y)*t; ret.z+=(u.b.z-u.a.z)*t; return ret; } point3 intersection(point3 u1,point3 u2,point3 v1,point3 v2){ point3 ret=u1; double t=((u1.x-v1.x)*(v1.y-v2.y)-(u1.y-v1.y)*(v1.x-v2.x)) /((u1.x-u2.x)*(v1.y-v2.y)-(u1.y-u2.y)*(v1.x-v2.x)); ret.x+=(u2.x-u1.x)*t; ret.y+=(u2.y-u1.y)*t; ret.z+=(u2.z-u1.z)*t; return ret; } //计算直线与平面交点,注意事先判断是否平行,并保证三点不共线! //线段和空间三角形交点请另外判断 point3 intersection(line3 l,plane3 s){ point3 ret=pvec(s); double t=(ret.x*(s.a.x-l.a.x)+ret.y*(s.a.y-l.a.y)+ret.z*(s.a.z-l.a.z))/ (ret.x*(l.b.x-l.a.x)+ret.y*(l.b.y-l.a.y)+ret.z*(l.b.z-l.a.z)); ret.x=l.a.x+(l.b.x-l.a.x)*t; ret.y=l.a.y+(l.b.y-l.a.y)*t; ret.z=l.a.z+(l.b.z-l.a.z)*t; return ret; } point3 intersection(point3 l1,point3 l2,point3 s1,point3 s2,point3 s3){ point3 ret=pvec(s1,s2,s3); double t=(ret.x*(s1.x-l1.x)+ret.y*(s1.y-l1.y)+ret.z*(s1.z-l1.z))/ (ret.x*(l2.x-l1.x)+ret.y*(l2.y-l1.y)+ret.z*(l2.z-l1.z)); ret.x=l1.x+(l2.x-l1.x)*t; ret.y=l1.y+(l2.y-l1.y)*t; ret.z=l1.z+(l2.z-l1.z)*t; return ret; } //计算两平面交线,注意事先判断是否平行,并保证三点不共线! line3 intersection(plane3 u,plane3 v){ line3 ret; ret.a=parallel(v.a,v.b,u.a,u.b,u.c)?intersection(v.b,v.c,u.a,u.b,u.c):intersection(v.a,v.b,u.a,u.b,u. c); ret.b=parallel(v.c,v.a,u.a,u.b,u.c)?intersection(v.b,v.c,u.a,u.b,u.c):intersection(v.c,v.a,u.a,u.b,u. c); return ret; } line3 intersection(point3 u1,point3 u2,point3 u3,point3 v1,point3 v2,point3 v3){ line3 ret; ret.a=parallel(v1,v2,u1,u2,u3)?intersection(v2,v3,u1,u2,u3):intersection(v1,v2,u1,u2,u3); ret.b=parallel(v3,v1,u1,u2,u3)?intersection(v2,v3,u1,u2,u3):intersection(v3,v1,u1,u2,u3); return ret; } //点到直线距离 double ptoline(point3 p,line3 l){ return vlen(xmult(subt(p,l.a),subt(l.b,l.a)))/distance(l.a,l.b); } double ptoline(point3 p,point3 l1,point3 l2){ return vlen(xmult(subt(p,l1),subt(l2,l1)))/distance(l1,l2); } //点到平面距离 double ptoplane(point3 p,plane3 s){ return fabs(dmult(pvec(s),subt(p,s.a)))/vlen(pvec(s)); } double ptoplane(point3 p,point3 s1,point3 s2,point3 s3){ return fabs(dmult(pvec(s1,s2,s3),subt(p,s1)))/vlen(pvec(s1,s2,s3)); } //直线到直线距离 double linetoline(line3 u,line3 v){ point3 n=xmult(subt(u.a,u.b),subt(v.a,v.b)); return fabs(dmult(subt(u.a,v.a),n))/vlen(n); } double linetoline(point3 u1,point3 u2,point3 v1,point3 v2){ point3 n=xmult(subt(u1,u2),subt(v1,v2)); return fabs(dmult(subt(u1,v1),n))/vlen(n); } //两直线夹角 cos 值 double angle_cos(line3 u,line3 v){ return dmult(subt(u.a,u.b),subt(v.a,v.b))/vlen(subt(u.a,u.b))/vlen(subt(v.a,v.b)); } double angle_cos(point3 u1,point3 u2,point3 v1,point3 v2){ return dmult(subt(u1,u2),subt(v1,v2))/vlen(subt(u1,u2))/vlen(subt(v1,v2)); } //两平面夹角 cos 值 double angle_cos(plane3 u,plane3 v){ return dmult(pvec(u),pvec(v))/vlen(pvec(u))/vlen(pvec(v)); } double angle_cos(point3 u1,point3 u2,point3 u3,point3 v1,point3 v2,point3 v3){ return dmult(pvec(u1,u2,u3),pvec(v1,v2,v3))/vlen(pvec(u1,u2,u3))/vlen(pvec(v1,v2,v3)); } //直线平面夹角 sin 值 double angle_sin(line3 l,plane3 s){ return dmult(subt(l.a,l.b),pvec(s))/vlen(subt(l.a,l.b))/vlen(pvec(s)); } double angle_sin(point3 l1,point3 l2,point3 s1,point3 s2,point3 s3){ return dmult(subt(l1,l2),pvec(s1,s2,s3))/vlen(subt(l1,l2))/vlen(pvec(s1,s2,s3)); }
1.10 凸包
#include#define eps 1e-8 #define zero(x) (((x)>0?(x):-(x)) struct point{double x,y;}; //计算 cross product (P1-P0)x(P2-P0) double xmult(point p1,point p2,point p0){ return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y); } //graham算法顺时针构造包含所有共线点的凸包,O(nlogn) point p1,p2; int graham_cp(const void* a,const void* b){ double ret=xmult(*((point*)a),*((point*)b),p1); return zero(ret)?(xmult(*((point*)a),*((point*)b),p2)>0?1:-1):(ret>0?1:-1); } void _graham(int n,point* p,int& s,point* ch){ int i,k=0; for (p1=p2=p[0],i=1;i ) if (p1.y-p[i].y>eps||(zero(p1.y-p[i].y)&&p1.x>p[i].x)) p1=p[k=i]; p2.x/=n,p2.y/=n; p[k]=p[0],p[0]=p1; qsort(p+1,n-1,sizeof(point),graham_cp); for (ch[0]=p[0],ch[1]=p[1],ch[2]=p[2],s=i=3;i ]) for (;s>2&&xmult(ch[s-2],p[i],ch[s-1])<-eps;s--); } //构造凸包接口函数,传入原始点集大小 n,点集 p(p 原有顺序被打乱!) //返回凸包大小,凸包的点在 convex 中 //参数 maxsize 为 1 包含共线点,为 0 不包含共线点,缺省为 1 //参数 clockwise 为 1 顺时针构造,为 0 逆时针构造,缺省为 1 //在输入仅有若干共线点时算法不稳定,可能有此类情况请另行处理! //不能去掉点集中重合的点 int graham(int n,point* p,point* convex,int maxsize=1,int dir=1){ point* temp=new point[n]; int s,i; _graham(n,p,s,temp); for (convex[0]=temp[0],n=1,i=(dir?1:(s-1));dir?(i 1:-1)) if (maxsize||!zero(xmult(temp[i-1],temp[i],temp[(i+1)%s]))) convex[n++]=temp[i]; delete []temp; return n; }
网格
#define abs(x) ((x)>0?(x):-(x)) struct point{int x,y;}; int gcd(int a,int b){ return b?gcd(b,a%b):a; } //多边形上的网格点个数 int grid_onedge(int n,point* p){ int i,ret=0; for (i=0;i) ret+=gcd(abs(p[i].x-p[(i+1)%n].x),abs(p[i].y-p[(i+1)%n].y)); return ret; } //多边形内的网格点个数 int grid_inside(int n,point* p){ int i,ret=0; for (i=0;i ) ret+=p[(i+1)%n].y*(p[i].x-p[(i+2)%n].x); return (abs(ret)-grid_onedge(n,p))/2+1; }
圆
#include#define eps 1e-8 struct point{double x,y;}; double xmult(point p1,point p2,point p0){ return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y); } double distance(point p1,point p2){ return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y)); } double disptoline(point p,point l1,point l2){ return fabs(xmult(p,l1,l2))/distance(l1,l2); } 50 point intersection(point u1,point u2,point v1,point v2){ point ret=u1; double t=((u1.x-v1.x)*(v1.y-v2.y)-(u1.y-v1.y)*(v1.x-v2.x)) /((u1.x-u2.x)*(v1.y-v2.y)-(u1.y-u2.y)*(v1.x-v2.x)); ret.x+=(u2.x-u1.x)*t; ret.y+=(u2.y-u1.y)*t; return ret; } //判直线和圆相交,包括相切 int intersect_line_circle(point c,double r,point l1,point l2){ return disptoline(c,l1,l2) eps; } //判线段和圆相交,包括端点和相切 int intersect_seg_circle(point c,double r,point l1,point l2){ double t1=distance(c,l1)-r,t2=distance(c,l2)-r; point t=c; if (t1 eps) return t1>-eps||t2>-eps; t.x+=l1.y-l2.y; t.y+=l2.x-l1.x; return xmult(l1,c,t)*xmult(l2,c,t) eps; } //判圆和圆相交,包括相切 int intersect_circle_circle(point c1,double r1,point c2,double r2){ return distance(c1,c2) fabs(r1-r2)-eps; } //计算圆上到点 p 最近点,如 p 与圆心重合,返回 p 本身 point dot_to_circle(point c,double r,point p){ point u,v; if (distance(p,c)<eps) return p; u.x=c.x+r*fabs(c.x-p.x)/distance(c,p); u.y=c.y+r*fabs(c.y-p.y)/distance(c,p)*((c.x-p.x)*(c.y-p.y)<0?-1:1); v.x=c.x-r*fabs(c.x-p.x)/distance(c,p); v.y=c.y-r*fabs(c.y-p.y)/distance(c,p)*((c.x-p.x)*(c.y-p.y)<0?-1:1); return distance(u,p) u:v; } //计算直线与圆的交点,保证直线与圆有交点 //计算线段与圆的交点可用这个函数后判点是否在线段上 51 void intersection_line_circle(point c,double r,point l1,point l2,point& p1,point& p2){ point p=c; double t; p.x+=l1.y-l2.y; p.y+=l2.x-l1.x; p=intersection(p,c,l1,l2); t=sqrt(r*r-distance(p,c)*distance(p,c))/distance(l1,l2); p1.x=p.x+(l2.x-l1.x)*t; p1.y=p.y+(l2.y-l1.y)*t; p2.x=p.x-(l2.x-l1.x)*t; p2.y=p.y-(l2.y-l1.y)*t; } //计算圆与圆的交点,保证圆与圆有交点,圆心不重合 void intersection_circle_circle(point c1,double r1,point c2,double r2,point& p1,point& p2){ point u,v; double t; t=(1+(r1*r1-r2*r2)/distance(c1,c2)/distance(c1,c2))/2; u.x=c1.x+(c2.x-c1.x)*t; u.y=c1.y+(c2.y-c1.y)*t; v.x=u.x+c1.y-c2.y; v.y=u.y-c1.x+c2.x; intersection_line_circle(c1,r1,u,v,p1,p2); }
1.13 整数函数
//整数几何函数库 //注意某些情况下整数运算会出界! #define sign(a) ((a)>0?1:(((a)<0?-1:0))) struct point{int x,y;}; struct line{point a,b;}; //计算 cross product (P1-P0)x(P2-P0) int xmult(point p1,point p2,point p0){ return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y); } int xmult(int x1,int y1,int x2,int y2,int x0,int y0){ return (x1-x0)*(y2-y0)-(x2-x0)*(y1-y0); } //计算 dot product (P1-P0).(P2-P0) int dmult(point p1,point p2,point p0){ return (p1.x-p0.x)*(p2.x-p0.x)+(p1.y-p0.y)*(p2.y-p0.y); 52 } int dmult(int x1,int y1,int x2,int y2,int x0,int y0){ return (x1-x0)*(x2-x0)+(y1-y0)*(y2-y0); } //判三点共线 int dots_inline(point p1,point p2,point p3){ return !xmult(p1,p2,p3); } int dots_inline(int x1,int y1,int x2,int y2,int x3,int y3){ return !xmult(x1,y1,x2,y2,x3,y3); } //判点是否在线段上,包括端点和部分重合 int dot_online_in(point p,line l){ return !xmult(p,l.a,l.b)&&(l.a.x-p.x)*(l.b.x-p.x)<=0&&(l.a.y-p.y)*(l.b.y-p.y)<=0; } int dot_online_in(point p,point l1,point l2){ return !xmult(p,l1,l2)&&(l1.x-p.x)*(l2.x-p.x)<=0&&(l1.y-p.y)*(l2.y-p.y)<=0; } int dot_online_in(int x,int y,int x1,int y1,int x2,int y2){ return !xmult(x,y,x1,y1,x2,y2)&&(x1-x)*(x2-x)<=0&&(y1-y)*(y2-y)<=0; } //判点是否在线段上,不包括端点 int dot_online_ex(point p,line l){ return dot_online_in(p,l)&&(p.x!=l.a.x||p.y!=l.a.y)&&(p.x!=l.b.x||p.y!=l.b.y); } int dot_online_ex(point p,point l1,point l2){ return dot_online_in(p,l1,l2)&&(p.x!=l1.x||p.y!=l1.y)&&(p.x!=l2.x||p.y!=l2.y); } int dot_online_ex(int x,int y,int x1,int y1,int x2,int y2){ return dot_online_in(x,y,x1,y1,x2,y2)&&(x!=x1||y!=y1)&&(x!=x2||y!=y2); } //判两点在直线同侧,点在直线上返回 0 int same_side(point p1,point p2,line l){ return sign(xmult(l.a,p1,l.b))*xmult(l.a,p2,l.b)>0; } int same_side(point p1,point p2,point l1,point l2){ return sign(xmult(l1,p1,l2))*xmult(l1,p2,l2)>0; } //判两点在直线异侧,点在直线上返回 0 53 int opposite_side(point p1,point p2,line l){ return sign(xmult(l.a,p1,l.b))*xmult(l.a,p2,l.b)<0; } int opposite_side(point p1,point p2,point l1,point l2){ return sign(xmult(l1,p1,l2))*xmult(l1,p2,l2)<0; } //判两直线平行 int parallel(line u,line v){ return (u.a.x-u.b.x)*(v.a.y-v.b.y)==(v.a.x-v.b.x)*(u.a.y-u.b.y); } int parallel(point u1,point u2,point v1,point v2){ return (u1.x-u2.x)*(v1.y-v2.y)==(v1.x-v2.x)*(u1.y-u2.y); } //判两直线垂直 int perpendicular(line u,line v){ return (u.a.x-u.b.x)*(v.a.x-v.b.x)==-(u.a.y-u.b.y)*(v.a.y-v.b.y); } int perpendicular(point u1,point u2,point v1,point v2){ return (u1.x-u2.x)*(v1.x-v2.x)==-(u1.y-u2.y)*(v1.y-v2.y); } //判两线段相交,包括端点和部分重合 int intersect_in(line u,line v){ if (!dots_inline(u.a,u.b,v.a)||!dots_inline(u.a,u.b,v.b)) return !same_side(u.a,u.b,v)&&!same_side(v.a,v.b,u); return dot_online_in(u.a,v)||dot_online_in(u.b,v)||dot_online_in(v.a,u)||dot_online_in(v.b,u); } int intersect_in(point u1,point u2,point v1,point v2){ if (!dots_inline(u1,u2,v1)||!dots_inline(u1,u2,v2)) return !same_side(u1,u2,v1,v2)&&!same_side(v1,v2,u1,u2); return dot_online_in(u1,v1,v2)||dot_online_in(u2,v1,v2)||dot_online_in(v1,u1,u2)||dot_online_in(v2,u1,u 2); } //判两线段相交,不包括端点和部分重合 int intersect_ex(line u,line v){ return opposite_side(u.a,u.b,v)&&opposite_side(v.a,v.b,u); } int intersect_ex(point u1,point u2,point v1,point v2){ return opposite_side(u1,u2,v1,v2)&&opposite_side(v1,v2,u1,u2); }