正解:最短路
解题报告:
传送门$QwQ$
考虑暴力连边,发现最多有$n^2$条边.于是考虑分块
对于长度$p_i$小于等于$\sqrt(n)$的边,建立子图$d=p_i$.说下关于子图$d$的定义?指的由$n$个点构成,每个点$j$都连向$j-d$和$j+d$的图.然后对于$p_i$对应的点$b_i$,指向图中的自己就行$QwQ$.因为这样的边数量不超过$\sqrt(n)$,所以边数少于$n\sqrt(n)$
对于长度$p_i$大于$\sqrt(n)$的边,直接暴力连边,因为长度大于$\sqrt(n)$,所以边数一样少于$n\sqrt(n)$.
然后跑个最短路就完事$QwQ$
#includeusing namespace std; #define il inline #define lf double #define gc getchar() #define mp make_pair #define P pair #define t(i) edge[i].to #define w(i) edge[i].wei #define ri register int #define rc register char #define rb register bool #define lowbit(x) (x&(-x)) #define rp(i,x,y) for(ri i=x;i<=y;++i) #define my(i,x,y) for(ri i=x;i>=y;--i) #define e(i,x) for(ri i=head[x];i;i=edge[i].nxt) const int N=3e4+10,sqN=200+10; int n,m,ed_cnt,head[N*sqN],S,T,p[sqN][N],dis[N*sqN],vis[N*sqN]; struct ed{int to,nxt,wei;}edge[N*500]; priority_queue< P,vector ,greater
>Q; il int read() { rc ch=gc;ri x=0;rb y=1; while(ch!='-' && (ch>'9' || ch<'0'))ch=gc; if(ch=='-')ch=gc,y=0; while(ch>='0' && ch<='9')x=(x<<1)+(x<<3)+(ch^'0'),ch=gc; return y?x:-x; } il void ad(ri x,ri y,ri z){edge[++ed_cnt]=(ed){x,head[y],z};head[y]=ed_cnt;} il void pre() { ri sq=sqrt(n),cnt=n-1;sq=min(sq,100); rp(k,1,sq)rp(i,0,k-1)for(ri j=i;j
0);if(j!=i)ad(cnt,cnt-1,1),ad(cnt-1,cnt,1);} rp(i,1,m) { ri x=read(),y=read();if(y<=sq)ad(p[y][x],x,0);else{rp(j,1,(n-x-1)/y)ad(x+j*y,x,j);rp(j,1,x/y)ad(x-y*j,x,j);} if(i==1)S=x;;if(i==2)T=x; } } il void dij() { memset(dis,63,sizeof(dis));dis[S]=0;Q.push(mp(0,S)); while(!Q.empty()) { ri nw=Q.top().second;Q.pop();if(vis[nw])continue;vis[nw]=1; e(i,nw)if(dis[t(i)]>dis[nw]+w(i))dis[t(i)]=dis[nw]+w(i),Q.push(mp(dis[t(i)],t(i))); } if(dis[T]==dis[(N*sqN-5)])printf("-1\n");else printf("%d\n",dis[T]); } int main() { //freopen("QwQ.in","r",stdin);freopen("QwQ.out","w",stdout); n=read();m=read();pre();dij(); return 0; }