本文由“yuanrw”分享,博客:juejin.im/user/5cefab8451882510eb758606,收录时内容有改动和修订。
0、引言
站长提示:本文适合IM新手阅读,但最好有一定的网络编程经验,必竟实践性的代码上手就是网络编程。如果你对网络编程,以及IM的一些理论知识知之甚少,请务必首先阅读:《新手入门一篇就够:从零开发移动端IM》,该文为IM小白分类整理了详尽的理论资料,请按需补充相关知识。
配套源码:本文写的比较浅显但不太易懂,建议结合代码一起来读,文章配套的完整源码 请从本文文末 “11、完整源码下载” 处下载!
学习交流:
- 即时通讯/推送技术开发交流5群:215477170 [推荐]
- 移动端IM开发入门文章:《新手入门一篇就够:从零开发移动端IM》
(本文同步发布于:http://www.52im.net/thread-2768-1-1.html)
1、内容概述
首先讲讲IM(即时通讯)技术可以用来做什么:
1)聊天:qq、微信;
2)直播:斗鱼直播、抖音;
3)实时位置共享、游戏多人互动等等。
可以说几乎所有高实时性的应用场景都需要用到IM技术。
本篇将带大家从零开始搭建一个轻量级的IM服务端。
麻雀虽小,五脏俱全,我们搭建的IM服务端实现以下功能:
1)一对一的文本消息、文件消息通信;
2)每个消息有“已发送”/“已送达”/“已读”回执;
3)存储离线消息;
4)支持用户登录,好友关系等基本功能;
5)能够方便地水平扩展。
通过这个项目能学到很多后端必备知识:
1)rpc通信;
2)数据库;
3)缓存;
4)消息队列;
5)分布式、高并发的架构设计;
6)docker部署。
2、相关文章
更多实践性代码参考:
- 《开源移动端IM技术框架MobileIMSDK》(* 推荐)
- 《自已开发IM有那么难吗?手把手教你自撸一个Andriod版简易IM (有源码)》
- 《一种Android端IM智能心跳算法的设计与实现探讨(含样例代码)》
- 《手把手教你用Netty实现网络通信程序的心跳机制、断线重连机制》
- 《NIO框架入门(一):服务端基于Netty4的UDP双向通信Demo演示 [附件下载]》
- 《NIO框架入门(二):服务端基于MINA2的UDP双向通信Demo演示 [附件下载]》
- 《NIO框架入门(三):iOS与MINA2、Netty4的跨平台UDP双向通信实战 [附件下载]》
- 《NIO框架入门(四):Android与MINA2、Netty4的跨平台UDP双向通信实战 [附件下载]》
- 《一个WebSocket实时聊天室Demo:基于node.js+socket.io [附件下载]》
相关IM架构方面的文章:
- 《浅谈IM系统的架构设计》
- 《简述移动端IM开发的那些坑:架构设计、通信协议和客户端》
- 《一套海量在线用户的移动端IM架构设计实践分享(含详细图文)》
- 《一套原创分布式即时通讯(IM)系统理论架构方案》
- 《从零到卓越:京东客服即时通讯系统的技术架构演进历程》
- 《蘑菇街即时通讯/IM服务器开发之架构选择》
- 《一套高可用、易伸缩、高并发的IM群聊、单聊架构方案设计实践》
3、消息通信
3.1 文本消息
我们先从最简单的特性开始实现:一个普通消息的发送。
消息格式如下:
message ChatMsg{
id= 1;
//消息id
fromId = Alice
//发送者userId
destId = Bob
//接收者userId
msgBody = hello
//消息体
}
如上图,我们现在有两个用户:Alice和Bob连接到了服务器,当Alice发送消息message(hello)给Bob,服务端接收到消息,根据消息的destId进行转发,转发给Bob。
3.2 发送回执
那我们要怎么来实现回执的发送呢?
我们定义一种回执数据格式ACK,MsgType有三种,分别是sent(已发送),delivered(已送达), read(已读)。
消息格式如下:
message AckMsg {
id;
//消息id
fromId;
//发送者id
destId;
//接收者id
msgType;
//消息类型
ackMsgId;
//确认的消息id
}
enum MsgType {
DELIVERED;
READ;
}
当服务端接受到Alice发来的消息时:
1)向Alice发送一个sent(hello)表示消息已经被发送到服务器:
message AckMsg {
id= 2;
fromId = Alice;
destId = Bob;
msgType = SENT;
ackMsgId = 1;
}
2)服务器把hello转发给Bob后,立刻向Alice发送delivered(hello)表示消息已经发送给Bob:
message AckMsg {
id= 3;
fromId = Bob;
destId = Alice;
msgType = DELIVERED;
ackMsgId = 1;
}
3)Bob阅读消息后,客户端向服务器发送read(hello)表示消息已读:
message AckMsg {
id= 4;
fromId = Bob;
destId = Alice;
msgType = READ;
ackMsgId = 1;
}
这个消息会像一个普通聊天消息一样被服务器处理,最终发送给Alice。
在服务器这里不区分ChatMsg和AckMsg,处理过程都是一样的:解析消息的destId并进行转发。
4、水平扩展
当用户量越来越大,必然需要增加服务器的数量,用户的连接被分散在不同的机器上。此时,就需要存储用户连接在哪台机器上。
我们引入一个新的模块来管理用户的连接信息。
4.1 管理用户状态
模块叫做user status,共有三个接口:
public interface UserStatusService {
/**
* 用户上线,存储userId与机器id的关系
*
* @param userId
* @param connectorId
* @return 如果当前用户在线,则返回他连接的机器id,否则返回null
*/
String online(String userId, String connectorId);
/**
* 用户下线
*
* @param userId
*/
voidoffline(String userId);
/**
* 通过用户id查找他当前连接的机器id
*
* @param userId
* @return
*/
String getConnectorId(String userId);
}
这样我们就能够对用户连接状态进行管理了,具体的实现应考虑服务的用户量、期望性能等进行实现。
此处我们使用redis来实现,将userId和connectorId的关系以key-value的形式存储。
4.2 消息转发
除此之外,还需要一个模块在不同的机器上转发消息,如下结构:
此时我们的服务被拆分成了connector和transfer两个模块,connector模块用于维持用户的长链接,而transfer的作用是将消息在多个connector之间转发。
现在Alice和Bob连接到了两台connector上,那么消息要如何传递呢?
1)Alice上线,连接到机器[1]上时:
1.1)将Alice和它的连接存入内存中。
1.2)调用user status的online方法记录Alice上线。
2)Alice发送了一条消息给Bob:
2.1)机器[1]收到消息后,解析destId,在内存中查找是否有Bob。
2.2)如果没有,代表Bob未连接到这台机器,则转发给transfer。
3)transfer调用user status的getConnectorId(Bob)方法找到Bob所连接的connector,返回机器[2],则转发给机器[2]。
流程图:
4.3 总结
引入user status模块管理用户连接,transfer模块在不同的机器之间转发,使服务可以水平扩展。为了满足实时转发,transfer需要和每台connector机器都保持长链接。
5、离线消息
如果用户当前不在线,就必须把消息持久化下来,等待用户下次上线再推送,这里使用mysql存储离线消息。
为了方便地水平扩展,我们使用消息队列进行解耦:
1)transfer接收到消息后如果发现用户不在线,就发送给消息队列入库;
2)用户登录时,服务器从库里拉取离线消息进行推送。
6、用户登录、好友关系
用户的注册登录、账户管理、好友关系链等功能更适合使用http协议,因此我们将这个模块做成一个restful服务,对外暴露http接口供客户端调用。
至此服务端的基本架构就完成了:
7、中场休息 ... ...
本文以上内容,本篇帮大家构建了IM服务端的架构,但还有很多细节需要我们去思考。
例如:
1)如何保证消息的顺序和唯一
2)多个设备在线如何保证消息一致性
3)如何处理消息发送失败
4)消息的安全性
5)如果要存储聊天记录要怎么做
6)数据库分表分库
7)服务高可用
……
更多细节实现请继续读下半部分啦~
8、可靠性
什么是可靠性?对于一个IM系统来说,可靠的定义至少是不丢消息、消息不重复、不乱序,满足这三点,才能说有一个好的聊天体验。
8.1 不丢消息
我们先从不丢消息开始讲起。
首先复习一下上面章节中设计的服务端架构:
我们先从一个简单例子开始思考:当Alice给Bob发送一条消息时,可能要经过这样一条链路:
1)client-->connecter
2)connector-->transfer
3)transfer-->connector
4)connector-->client
在这整个链路中的每个环节都有可能出问题,虽然tcp协议是可靠的,但是它只能保证链路层的可靠,无法保证应用层的可靠。
例如在第一步中,connector收到了从client发出的消息,但是转发给transfer失败,那么这条消息Bob就无法收到,而Alice也不会意识到消息发送失败了。
如果Bob状态是离线,那么消息链路就是:
1)client-->connector
2)connector-->transfer
3)transfer-->mq
如果在第三步中,transfer收到了来自connector的消息,但是离线消息入库失败,那么这个消息也是传递失败了。
为了保证应用层的可靠,我们必须要有一个ack机制,使发送方能够确认对方收到了这条消息。
具体的实现,我们模仿tcp协议做一个应用层的ack机制。
tcp的报文是以字节(byte)为单位的,而我们以message单位。
发送方每次发送一个消息,就要等待对方的ack回应,在ack确认消息中应该带有收到的id以便发送方识别。
其次,发送方需要维护一个等待ack的队列。 每次发送一个消息之后,就将消息和一个计时器入队。
另外存在一个线程一直轮询队列,如果有超时未收到ack的,就取出消息重发。
超时未收到ack的消息有两种处理方式:
1)和tcp一样不断发送直到收到ack为止。
2)设定一个最大重试次数,超过这个次数还没收到ack,就使用失败机制处理,节约资源。例如如果是connector长时间未收到client的ack,那么可以主动断开和客户端的连接,剩下未发送的消息就作为离线消息入库,客户端断连后尝试重连服务器即可。
8.2 不重复、不乱序
有的时候因为网络原因可能导致ack收到较慢,发送方就会重复发送,那么接收方必须有一个去重机制。
去重的方式是给每个消息增加一个唯一id。这个唯一id并不一定是全局的,只需要在一个会话中唯一即可。例如某两个人的会话,或者某一个群。如果网络断连了,重新连接后,就是新的会话了,id会重新从0开始。
关于消息ID的生成算法方面的文章,请详细参考:
《融云技术分享:解密融云IM产品的聊天消息ID生成策略》
《微信技术分享:微信的海量IM聊天消息序列号生成实践(算法原理篇)》
《微信技术分享:微信的海量IM聊天消息序列号生成实践(容灾方案篇)》
《美团技术分享:深度解密美团的分布式ID生成算法》
接收方需要在当前会话中维护收到的最后一个消息的id,叫做lastId。
每次收到一个新消息, 就将id与lastId作比较看是否连续,如果不连续,就放入一个暂存队列 queue中稍后处理。
例如:
1)当前会话的lastId=1,接着服务器收到了消息msg(id=2),可以判断收到的消息是连续的,就处理消息,将lastId修改为2;
2)但是如果服务器收到消息msg(id=3),就说明消息乱序到达了,那么就将这个消息入队,等待lastId变为2后,(即服务器收到消息msg(id=2)并处理完了),再取出这个消息处理。
因此,判断消息是否重复只需要判断msgId>lastId && !queue.contains(msgId)即可。如果收到重复的消息,可以判断是ack未送达,就再发送一次ack。
接收方收到消息后完整的处理流程如下:
伪代码如下:
class ProcessMsgNode{
/**
* 接收到的消息
*/
privateMessage message;
/**
* 处理消息的方法
*/
privateConsumer
consumer; }
public CompletableFuture
offer(Long id,Message message,Consumer consumer) { if(isRepeat(id)) {
//消息重复
sendAck(id);
return null;
}
if(!isConsist(id)) {
//消息不连续
notConsistMsgMap.put(id, newProcessMsgNode(message, consumer));
return null;
}
//处理消息
returnprocess(id, message, consumer);
}
private CompletableFuture
process(Long id, Message message, Consumer consumer) { return CompletableFuture
.runAsync(() -> consumer.accept(message))
.thenAccept(v -> sendAck(id))
.thenAccept(v -> lastId.set(id))
.thenComposeAsync(v -> {
Long nextId = nextId(id);
if(notConsistMsgMap.containsKey(nextId)) {
//队列中有下个消息
ProcessMsgNode node = notConsistMsgMap.get(nextId);
returnprocess(nextId, node.getMessage(), consumer);
} else{
//队列中没有下个消息
CompletableFuture
future = newCompletableFuture<>(); future.complete(null);
returnfuture;
}
})
.exceptionally(e -> {
logger.error("[process received msg] has error", e);
returnnull;
});
}
9、安全性
无论是聊天记录还是离线消息,肯定都会在服务端存储备份,那么消息的安全性,保护客户的隐私也至关重要。
因此所有的消息都必须要加密处理。
在存储模块里,维护用户信息和关系链有两张基础表,分别是im_user用户表和im_relation关系链表。
im_user表用于存放用户常规信息,例如用户名密码等,结构比较简单。
im_relation表用于记录好友关系。
结构如下:
CREATE TABLE `im_relation` (
`id` bigint(20) COMMENT '关系id',
`user_id1` varchar(100) COMMENT '用户1id',
`user_id2` varchar(100) COMMENT '用户2id',
`encrypt_key` char(33) COMMENT 'aes密钥',
`gmt_create` timestamp DEFAULT CURRENT_TIMESTAMP,
`gmt_update` timestamp DEFAUL TCURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
PRIMARYKEY(`id`),
UNIQUE KEY `USERID1_USERID2` (`user_id1`,`user_id2`)
);
1)user_id1和user_id2是互为好友的用户id,为了避免重复,存储时按照user_id1 2)encrypt_key是随机生成的密钥。当客户端登录时,就会从数据库中获取该用户的所有的relation,存在内存中,以便后续加密解密; 3)当客户端给某个好友发送消息时,取出内存中该关系的密钥,加密后发送。同样,当收到一条消息时,取出相应的密钥解密。 客户端完整登录流程如下: 1)client调用rest接口登录; 2)client调用rest接口获取该用户所有relation; 3)client向connector发送greet消息,通知上线; 4)connector拉取离线消息推送给client; 5)connector更新用户session。 那为什么connector要先推送离线消息再更新session呢? 我们思考一下如果顺序倒过来会发生什么: 1)用户Alice登录服务器; 2)connector更新session; 3)推送离线消息; 4)此时Bob发送了一条消息给Alice。 如果离线消息还在推送的过程中,Bob发送了新消息给Alice,服务器获取到Alice的session,就会立刻推送。这时新消息就有可能夹在一堆离线消息当中推过去了,那这时,Alice收到的消息就乱序了。 而我们必须保证离线消息的顺序在新消息之前。 那么如果先推送离线消息,之后才更新session。在离线消息推送的过程中,Alice的状态就是“未上线”,这时Bob新发送的消息只会入库im_offline,im_offline表中的数据被读完之后才会“上线”开始接受新消息。这也就避免了乱序。 当用户不在线时,离线消息必然要存储在服务端,等待用户上线再推送。理解了上一个小节后,离线消息的存储就非常容易了。 增加一张离线消息表im_offline,表结构如下: CREATE TABLE `im_offline` ( `id` int(11) COMMENT '主键', `msg_id` bigint(20) COMMENT '消息id', `msg_type` int(2) COMMENT '消息类型', `content` varbinary(5000) COMMENT '消息内容', `to_user_id` varchar(100) COMMENT '收件人id', `has_read` tinyint(1) COMMENT '是否阅读', `gmt_create` timestamp COMMENT '创建时间', PRIMARY KEY(`id`) ); msg_type用于区分消息类型(chat,ack),content加密后的消息内容以byte数组的形式存储。 用户上线时按照条件to_user_id=用户id拉取记录即可。 我们思考一下多端登录的情况,Alice有两台设备同时登陆,在这种并发的情况下,我们就需要某种机制来保证离线消息只被读取一次。 这里利用CAS机制来实现: 1)首先取出所有has_read=false的字段; 2)检查每条消息的has_read值是否为false,如果是,则改为true。这是原子操作: 1updateim_offline sethas_read = truewhereid = ${msg_id} andhas_read = false 3)修改成功则推送,失败则不推送。 相信到这里,同学们已经可以自己动手搭建一个完整可用的IM服务端了。 从零开发一个IM服务端(完整源码)(52im.net).zip (或自行从github下载:https://github.com/52im/IM) [1] 更多IM代码实践(适合新手): (本文同步发布于:http://www.52im.net/thread-2768-1-1.html)10、存储设计
10.1 存储离线消息
10.2 防止离线消息重复推送
11、完整源码下载
附录:更多IM开发文章
《自已开发IM有那么难吗?手把手教你自撸一个Andriod版简易IM (有源码)》
《一种Android端IM智能心跳算法的设计与实现探讨(含样例代码)》
《手把手教你用Netty实现网络通信程序的心跳机制、断线重连机制》
《详解Netty的安全性:原理介绍、代码演示(上篇)》
《详解Netty的安全性:原理介绍、代码演示(下篇)》
《微信本地数据库破解版(含iOS、Android),仅供学习研究 [附件下载]》
《Java NIO基础视频教程、MINA视频教程、Netty快速入门视频 [有源码]》
《轻量级即时通讯框架MobileIMSDK的iOS源码(开源版)[附件下载]》
《开源IM工程“蘑菇街TeamTalk”2015年5月前未删减版完整代码 [附件下载]》
《微信本地数据库破解版(含iOS、Android),仅供学习研究 [附件下载]》
《NIO框架入门(一):服务端基于Netty4的UDP双向通信Demo演示 [附件下载]》
《NIO框架入门(二):服务端基于MINA2的UDP双向通信Demo演示 [附件下载]》
《NIO框架入门(三):iOS与MINA2、Netty4的跨平台UDP双向通信实战 [附件下载]》
《NIO框架入门(四):Android与MINA2、Netty4的跨平台UDP双向通信实战 [附件下载]》
《用于IM中图片压缩的Android工具类源码,效果可媲美微信 [附件下载]》
《高仿Android版手机QQ可拖拽未读数小气泡源码 [附件下载]》
《一个WebSocket实时聊天室Demo:基于node.js+socket.io [附件下载]》
《Android聊天界面源码:实现了聊天气泡、表情图标(可翻页) [附件下载]》
《高仿Android版手机QQ首页侧滑菜单源码 [附件下载]》
《开源libco库:单机千万连接、支撑微信8亿用户的后台框架基石 [源码下载]》
《分享java AMR音频文件合并源码,全网最全》
《微信团队原创Android资源混淆工具:AndResGuard [有源码]》
《一个基于MQTT通信协议的完整Android推送Demo [附件下载]》
《Android版高仿微信聊天界面源码 [附件下载]》
《高仿手机QQ的Android版锁屏聊天消息提醒功能 [附件下载]》
《高仿iOS版手机QQ录音及振幅动画完整实现 [源码下载]》
《Android端社交应用中的评论和回复功能实战分享[图文+源码]》
《Android端IM应用中的@人功能实现:仿微博、QQ、微信,零入侵、高可扩展[图文+源码]》
《仿微信的IM聊天时间显示格式(含iOS/Android/Web实现)[图文+源码]》
《Android版仿微信朋友圈图片拖拽返回效果 [源码下载]》
《适合新手:从零开发一个IM服务端(基于Netty,有完整源码)》
>> 更多同类文章 ……
[2] IM群聊相关的技术文章:
《快速裂变:见证微信强大后台架构从0到1的演进历程(一)》
《如何保证IM实时消息的“时序性”与“一致性”?》
《IM单聊和群聊中的在线状态同步应该用“推”还是“拉”?》
《IM群聊消息如此复杂,如何保证不丢不重?》
《微信后台团队:微信后台异步消息队列的优化升级实践分享》
《移动端IM中大规模群消息的推送如何保证效率、实时性?》
《现代IM系统中聊天消息的同步和存储方案探讨》
《关于IM即时通讯群聊消息的乱序问题讨论》
《IM群聊消息的已读回执功能该怎么实现?》
《IM群聊消息究竟是存1份(即扩散读)还是存多份(即扩散写)?》
《一套高可用、易伸缩、高并发的IM群聊、单聊架构方案设计实践》
《[技术脑洞] 如果把14亿中国人拉到一个微信群里技术上能实现吗?》
《IM群聊机制,除了循环去发消息还有什么方式?如何优化?》
《网易云信技术分享:IM中的万人群聊技术方案实践总结》
>> 更多同类文章 ……
[3] 有关IM架构设计的文章:
《浅谈IM系统的架构设计》
《简述移动端IM开发的那些坑:架构设计、通信协议和客户端》
《一套海量在线用户的移动端IM架构设计实践分享(含详细图文)》
《一套原创分布式即时通讯(IM)系统理论架构方案》
《从零到卓越:京东客服即时通讯系统的技术架构演进历程》
《蘑菇街即时通讯/IM服务器开发之架构选择》
《腾讯QQ1.4亿在线用户的技术挑战和架构演进之路PPT》
《微信后台基于时间序的海量数据冷热分级架构设计实践》
《微信技术总监谈架构:微信之道——大道至简(演讲全文)》
《如何解读《微信技术总监谈架构:微信之道——大道至简》》
《快速裂变:见证微信强大后台架构从0到1的演进历程(一)》
《17年的实践:腾讯海量产品的技术方法论》
《移动端IM中大规模群消息的推送如何保证效率、实时性?》
《现代IM系统中聊天消息的同步和存储方案探讨》
《IM开发基础知识补课(二):如何设计大量图片文件的服务端存储架构?》
《IM开发基础知识补课(三):快速理解服务端数据库读写分离原理及实践建议》
《IM开发基础知识补课(四):正确理解HTTP短连接中的Cookie、Session和Token》
《WhatsApp技术实践分享:32人工程团队创造的技术神话》
《微信朋友圈千亿访问量背后的技术挑战和实践总结》
《王者荣耀2亿用户量的背后:产品定位、技术架构、网络方案等》
《IM系统的MQ消息中间件选型:Kafka还是RabbitMQ?》
《腾讯资深架构师干货总结:一文读懂大型分布式系统设计的方方面面》
《以微博类应用场景为例,总结海量社交系统的架构设计步骤》
《快速理解高性能HTTP服务端的负载均衡技术原理》
《子弹短信光鲜的背后:网易云信首席架构师分享亿级IM平台的技术实践》
《知乎技术分享:从单机到2000万QPS并发的Redis高性能缓存实践之路》
《IM开发基础知识补课(五):通俗易懂,正确理解并用好MQ消息队列》
《微信技术分享:微信的海量IM聊天消息序列号生成实践(算法原理篇)》
《微信技术分享:微信的海量IM聊天消息序列号生成实践(容灾方案篇)》
《新手入门:零基础理解大型分布式架构的演进历史、技术原理、最佳实践》
《一套高可用、易伸缩、高并发的IM群聊、单聊架构方案设计实践》
《阿里技术分享:深度揭秘阿里数据库技术方案的10年变迁史》
《阿里技术分享:阿里自研金融级数据库OceanBase的艰辛成长之路》
《社交软件红包技术解密(一):全面解密QQ红包技术方案——架构、技术实现等》
《社交软件红包技术解密(二):解密微信摇一摇红包从0到1的技术演进》
《社交软件红包技术解密(三):微信摇一摇红包雨背后的技术细节》
《社交软件红包技术解密(四):微信红包系统是如何应对高并发的》
《社交软件红包技术解密(五):微信红包系统是如何实现高可用性的》
《社交软件红包技术解密(六):微信红包系统的存储层架构演进实践》
《社交软件红包技术解密(七):支付宝红包的海量高并发技术实践》
《社交软件红包技术解密(八):全面解密微博红包技术方案》
《社交软件红包技术解密(九):谈谈手Q红包的功能逻辑、容灾、运维、架构等》
《即时通讯新手入门:一文读懂什么是Nginx?它能否实现IM的负载均衡?》
《即时通讯新手入门:快速理解RPC技术——基本概念、原理和用途》
《多维度对比5款主流分布式MQ消息队列,妈妈再也不担心我的技术选型了》
《从游击队到正规军:马蜂窝旅游网的IM系统架构演进之路》
《IM开发基础知识补课(六):数据库用NoSQL还是SQL?读这篇就够了!》
>> 更多同类文章 ……