2018-06-05

关于实现RSA的具体算法


1.素性判断

Prime.py

# coding:utf-8

import math

import random

# 扩展欧几里得算法求模反元素

def ex_euclid(a, b, list):

    if b == 0:

        list[0] = 1L

        list[1] = 0L

        list[2] = a

    else:

        ex_euclid(b, a % b, list)

        temp = list[0]

        list[0] = list[1]

        list[1] = temp - a / b * list[1]

# 求模反元素

def mod_inverse(a, b):

    list = [0L, 0L, 0L]

    if a < b:

        a, b = b, a

    ex_euclid(a, b, list)

    if list[1] < 0:

        list[1] = a + list[1]

    return list[1]

# 快速幂模运算,把b拆分为二进制,遍历b的二进制,当二进制位为0时不计入计算

def quick_pow_mod(a, b, c):

    a = a % c

    ans = 1

    while b != 0:

        if b & 1:

            ans = (ans * a) % c

        b >>= 1

        a = (a % c) * (a % c)

    return ans

# n为要检验的大数,a < n,k = n - 1

def miller_rabin_witness(a, n):

    if n == 1:

        return False

    if n == 2:

        return True

    k = n - 1

    q = int(math.floor(math.log(k, 2)))

    while q > 0:

        m = k / 2 ** q

        if k % 2 ** q == 0 and m % 2 == 1:

            break

        q = q - 1

    if quick_pow_mod(a, n - 1, n) != 1:

        return False

    b1 = quick_pow_mod(a, m, n)

    for i in range(1, q + 1):

        if b1 == n - 1 or b1 == 1:

            return True

        b2 = b1 ** 2 % n

        b1 = b2

    if b1 == 1:

        return True

    return False

# Miller-Rabin素性检验算法,检验8次

def prime_test_miller_rabin(p, k):

    while k > 0:

        a = random.randint(1, p - 1)

        if not miller_rabin_witness(a, p):

            return False

        k = k - 1

    return True

# 判断 num 是否与 prime_arr 中的每一个数都互质

def prime_each(num, prime_arr):

    for prime in prime_arr:

        remainder = num % prime

        if remainder == 0:

            return False

    return True

# return a prime array from begin to end

def get_con_prime_array(begin, end):

    array = []

    for i in range(begin, end):

        flag = judge_prime(i)

        if flag:

            array.append(i)

    return array

# judge whether a number is prime

def judge_prime(number):

    temp = int(math.sqrt(number))

    for i in range(2, temp + 1):

        if number % i == 0:

            return False

    return True

# 根据 count 的值生成若干个与质数数组都互质的大数

def get_rand_prime_arr(count):

    arr = get_con_prime_array(2, 100000)

    prime = []

    while len(prime) < count:

        num = random.randint(pow(10, 100), pow(10, 101))

        if num % 2 == 0:

            num = num + 1

        while True:

            if prime_each(num, arr) and prime_test_miller_rabin(num, 8):

                if num not in prime:

                    prime.append(num)

                break

            num = num + 2

    return prime



2.RSA具体实现

RSA.py

# coding:utf-8

import random

2018-06-05_第1张图片

import Prime

# encryption ,according to the formula:m^e = c (mod n) , calculate c ,c == secret,m == message

def encryption(message, puk):

    return Prime.quick_pow_mod(message, puk[1], puk[0])

# decryption ,according to the formula:c^d = m (mod n),  calculate m ,

def decryption(secret, prk):

    return Prime.quick_pow_mod(secret, prk[1], prk[0])

def get_RSAKey():

    RSAKey = {}

    prime_arr = Prime.get_rand_prime_arr(2)

    p = prime_arr[0]

    q = prime_arr[1]

    while p == q:

        q = random.choice(prime_arr)

    n = p * q

    s = (p - 1) * (q - 1)

    e = 65537

    d = Prime.mod_inverse(e, s)

    print "p = ", p, ",q = ", q

    print "n = ", n

    print "e = ", e, ",d = ", d

    puk = [n, e]

    prk = [n, d]

    RSAKey['puk'] = puk

    RSAKey['prk'] = prk

    return RSAKey

if __name__ == '__main__':

    RSAKey = get_RSAKey()

    print "Enter a number less and shorter than ", len(str(RSAKey['puk'][0])), ",", RSAKey['puk'][0], ":"

    # only encrypt a number type

    message = int(input())

    secret = encryption(message, RSAKey['puk'])

    print "After the encryption data :", secret

    print len(str(secret))

    message = decryption(secret, RSAKey['prk'])

    print "After the decryption data :", message

    print len(str(message))

你可能感兴趣的:(2018-06-05)