Tensorflow - Variable

文章均迁移到我的主页 http://zhenlianghe.com

my github: https://github.com/LynnHo

tf.Variable

  1. 变量域?
    • tf.name_scope和tf.variable_scope都会对tf.Variable生成的变量域造成影响,tf.variable_scope中的reuse参数对tf.Variable没有影响(本质上是因为tf.Variable受到了tf.variable_scope中同时创建的tf.name_scope的影响)
  2. 重名?
    • 当变量名相同的时候,tf会自动打上序号
      with tf.name_scope('s'):    # or tf.variable_scope('s')
          a = tf.Variable(initial_value=10, name='a')
          b = tf.Variable(initial_value=10, name='a')
          print(a.name)
          print(b.name)
      
      [out]
      s/a:0
      s/a_1:0
      
  3. 初始化?
    • tf.Variable是用一个tensor来初始化的,
      a = tf.Variable(initial_value=[1, 2])
      b = tf.Variable(initial_value=tf.constant([1, 2]))
      c = tf.Variable(initial_value=tf.random_uniform(shape=(1, 2)))
      d = tf.Variable(initial_value=tf.zeros_initializer()(shape=(1, 2), dtype=tf.int64))
      e = tf.Variable(initial_value=slim.xavier_initializer()(shape=(1, 2)))
      
    • tf.zeros_initializer()返回的是一个对象,对象对应的类有相应的call函数,这个call函数负责产生一个相应类型的tensor
    • slim.xavier_initializer()则返回的是一个函数,调用这个函数能够产生一个相应类型的tensor
  4. 变量共享?
    • 用生成的变量去干不同的事情不就共享了嘛
    • tf.Variable产生的变量不能用tf.variable_scope的reuse设置共享,否则会报错

tf.get_variable

  1. 变量域?
    • tf.get_variable产生的变量只会受到tf.variable_scope的影响,不受tf.name_scope的影响
      with tf.name_scope('s'):
          a = tf.get_variable(name='a', shape=(10, 10))
      with tf.variable_scope('s'):
          b = tf.get_variable(name='a', shape=(10, 10))
      print(a.name)
      print(b.name)
      
      [out]
      a:0
      s/a:0
      
  2. 重名?变量共享?
    • 在同一个域下,重名是会报错的。
      with tf.variable_scope('s'):
          a = tf.get_variable(name='a', shape=(10, 10))
          b = tf.get_variable(name='a')
      
      [out]
      ValueError: Variable s/a already exists, disallowed. Did you mean to set reuse=True in VarScope?
      
      • 可以在需要复用变量之前改变scope的reuse状态
        with tf.variable_scope('s') as s:
            a = tf.get_variable(name='a', shape=(10, 10))
            s.reuse_variables()
            b = tf.get_variable(name='a')
        print(a == b)
        
        [out]
        True
        
      • 也可以设置tf.variable_scope的reuse参数为True来复用已经定义过的同名变量,但如果没定义过而设置reuse=True也是会报错的
        with tf.variable_scope('s', reuse=True):
            a = tf.get_variable(name='a')
        
        [out]
        ValueError: Variable s/a does not exist, or was not created with tf.get_variable(). Did you mean to set reuse=None in VarScope?
        
        with tf.variable_scope('s'):
            a = tf.get_variable(name='a', shape=(10, 10))
        with tf.variable_scope('s', reuse=True):
            b = tf.get_variable(name='a')
        print(a == b)
        
        [out]
        True
        
  3. 初始化?
    a = tf.get_variable(name='a', shape=(1, 2), initializer=tf.constant_initializer([1, 2]), dtype=tf.int64)
    b = tf.get_variable(name='b', shape=(1, 2), initializer=tf.random_uniform_initializer())
    c = tf.get_variable(name='c', shape=(1, 2), initializer=tf.zeros_initializer(), dtype=tf.int64)
    d = tf.get_variable(name='d', shape=(1, 2), initializer=slim.xavier_initializer())
    
    可见,只要给定相应的initializer就可以了,但是要注意dtype的设置,只有设置tf.get_variable的dtype参数才能正确生效,设置initializer的dtype参数是无效的

slim层里面的variable

  1. 注意,slim里面的variable生成机制实际上是和tf.get_variable是一样的,所以特性也是一样的,比如说变量域只受tf.variable_scope影响而不受tf.name_scope影响
  2. 层的命名
    1. 自动命名变量域,每一个slim层都有一个scope参数,如果不设置这个参数(默认为None),会有以下两种情况
      • 在同一个上下问管理器中(with tf.variable_scope('s'):)定义层,slim会按生成顺序自动命名变量域(本质上就是因为slim层里面利用了with tf.variable_scope(None, default_name, ...)的机制)
        x = tf.placeholder(tf.float32, shape=[None, 10])
        with tf.variable_scope('s'):
            a = slim.fully_connected(x, 10)
            b = slim.fully_connected(a, 10)
        for var in tf.trainable_variables():
            print(var.name)
        
        [out]  
        s/fully_connected/weights:0
        s/fully_connected/biases:0
        s/fully_connected_1/weights:0
        s/fully_connected_1/biases:0
        
      • 在不同的上下问管理器中定义层,但域名是一样的,slim将报错
        • 报错的例子
          x = tf.placeholder(tf.float32, shape=[None, 10])
          with tf.variable_scope('s'):
              a = slim.fully_connected(x, 10)
          with tf.variable_scope('s'):
              b = slim.fully_connected(x, 10)
          for var in tf.trainable_variables():
              print(var.name)
          
          [out]                
          Variable s/fully_connected/weights already exists, disallowed. Did you mean to set reuse=True in VarScope?
          
        • 报错的例子
          x = tf.placeholder(tf.float32, shape=[None, 10])
          with tf.variable_scope('s'):
              a = slim.layer_norm(x)
          with tf.variable_scope('s'):
              b = slim.layer_norm(x)
          for var in tf.trainable_variables():
              print(var.name)
          
          [out]
          ValueError: Variable s/LayerNorm/beta already exists, disallowed. Did you mean to set reuse=True in VarScope?
          
    2. 手动命名变量域,顾名思义。需要注意以下情况
      • 在同一个域中,如果两个层设置的scope参数是同一个名字,那么slim将报错
        • 报错的例子

          x = tf.placeholder(tf.float32, shape=[None, 2])
          with tf.variable_scope('s'):
              a = slim.fully_connected(x, 2, scope='a')
          with tf.variable_scope('s'): # 在这个例子中,这一行可有可无,效果相同
              b = slim.fully_connected(x, 2, scope='a')
          for var in tf.trainable_variables():
              print(var.name)
          
          [out]
          Variable s/a/weights already exists, disallowed. Did you mean to set reuse=True in VarScope?
          
        • 报错的例子

          x = tf.placeholder(tf.float32, shape=[None, 10])
          with tf.variable_scope('s'):
              a = slim.layer_norm(x, scope='a')
          with tf.variable_scope('s'): # 在这个例子中,这一行可有可无,效果相同
              b = slim.layer_norm(x, scope='a')
          
          [out]
          ValueError: Variable s/a/beta already exists, disallowed. Did you mean to set reuse=True in VarScope?
          
  3. 那么最合理的变量共享方式???实际上是和tf.get_variable定义的变量的共享机制是一样的,用reuse参数
    x = tf.placeholder(tf.float32, shape=[None, 2])
    with tf.variable_scope('s'):
        y = slim.fully_connected(x, 2, weights_initializer=tf.random_normal_initializer())
        a = slim.layer_norm(y)
    with tf.variable_scope('s', reuse=True):
        y = slim.fully_connected(x, 2)
        b = slim.layer_norm(y)
    for var in tf.trainable_variables():
        print(var.name)
    
    sess = tf.Session()
    sess.run(tf.global_variables_initializer())
    print(sess.run(a, feed_dict={x: [[1, 7]]}))
    print(sess.run(b, feed_dict={x: [[1, 7]]}))
    
    [out] 
    s/fully_connected/weights:0
    s/fully_connected/biases:0
    s/LayerNorm/beta:0
    s/LayerNorm/gamma:0
    [[-1.          1.00000012]]
    [[-1.          1.00000012]]
    

你可能感兴趣的:(Tensorflow - Variable)