- Ai时代初期,人类文明的多纬度演进方向分析
Ai度
人工智能
在AI时代初期,文明的演进呈现出多维度、跨领域的突破性特征,结合最新研究进展与实践案例,其深层变革可进一步细化为以下六大维度:一、技术平权与生产要素重构AI技术通过算力跃迁与认知革命重构生产要素。例如,华为昇腾芯片使县域政务系统获得省级决策能力,特斯拉工厂的机械臂实现0.8秒完成车身焊接,而量子-经典混合算法将药物分子模拟效率提升1200倍。这种技术平权运动正推动全球劳动生产率提升30%,同时催生
- 2024自学手册——网络安全(黑客技术)
网安CILLE
web安全安全网络
前言什么是网络安全网络安全可以基于攻击和防御视角来分类,我们经常听到的“红队”、“渗透测试”等就是研究攻击技术,而“蓝队”、“安全运营”、“安全运维”则研究防御技术。如何成为一名黑客很多朋友在学习安全方面都会半路转行,因为不知如何去学,在这里,我将这个整份答案分为黑客(网络安全)入门必备、黑客(网络安全)职业指南、黑客(网络安全)学习导航三大章节,涉及价值观、方法论、执行力、行业分类、职位解读、法
- 【无标题】
gs80140
AI人工智能
KVCache在自回归生成中的作用及显存优化1.什么是KVCache?在大语言模型(LLM)进行自回归(autoregressive)文本生成时,每次生成新token,都需要基于过去的上下文重新计算self-attention机制中的Key(K)和值(V)。KVCache(键值缓存)是一种优化策略,它缓存先前计算的K/V张量,避免重复计算,从而提高生成速度并降低计算成本。2.KVCache在自回归
- 源代码防泄密和安全上外网的关联
cnsinda_sdc
源码安全源代码加密信息安全网络安全服务器源代码防泄露
在数字化办公的时代,企业员工需要频繁访问互联网以获取信息、进行沟通和协作。然而,互联网的开放性也带来了诸多安全风险,如恶意软件、网络攻击、数据泄露等。SPN沙盒作为一种先进的安全上网解决方案,为企业提供了一种安全、可控的上网方式。一、系统构成与部署(一)管理端管理端是SPN沙盒系统的控制中心,负责对整个沙盒系统进行管理控制。它具备以下功能:系统配置与策略管理:管理员可以通过管理端对SPN沙盒系统进
- 高性能计算:GPU加速与分布式训练
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍随着人工智能技术的飞速发展,深度学习模型的规模和复杂度不断提升,对计算能力的需求也越来越高。传统的CPU架构已经难以满足深度学习模型训练的需求,因此,GPU加速和分布式训练成为了高性能计算领域的研究热点。1.1.深度学习与计算挑战深度学习模型通常包含数百万甚至数十亿个参数,训练过程需要进行大量的矩阵运算和梯度更新,对计算资源的需求非常高。传统的CPU架构虽然具有较强的通用性,但其并行计
- 【BERT和GPT的区别】
调皮的芋头
人工智能深度学习机器学习bertgpt
BERT采用完形填空(MaskedLanguageModeling,MLM)与GPT采用自回归生成(AutoregressiveGeneration)的差异,本质源于两者对语言建模的不同哲学导向与技术目标的根本分歧。这种选择不仅塑造了模型的架构特性,更决定了其应用边界与能力上限。以下从语言建模本质、任务适配性、技术约束及后续影响四个维度深入剖析:一、语言建模的本质差异1.BERT的“全知视角”与全
- 【Python进阶】Python字典添加元素的两种方法。{附带源码+案例}
「已注销」
python开发语言
引言在Python中,字典(Dictionary)是一种可变的容器模型,且可存储任意类型对象。字典的每个元素都是一个键值对(key-valuepair),其中键(key)必须是唯一的,而值(value)则不必。向字典中添加元素可以通过几种方式实现,但最常用的是通过直接赋值或使用update()方法。直接赋值这是向字典中添加元素最简单直接的方法。如果键已存在,则更新其对应的值;如果键不存在,则添加新
- 补偿算法之相位补偿算法
傻童:CPU
Qt自动控制理论算法android
补偿算法之相位补偿算法相位补偿算法:在一些控制系统中,系统的相位裕度可能不足,导致系统稳定性变差。相位补偿算法通过增加或减少特定频率下的相角来调整系统的相位特性。例如,在电机调速系统中,为了提高系统在高速运行时的稳定性,可能会采用相位超前补偿算法,通过在控制回路中添加适当的滤波器或控制器结构,使系统在高频段的相位提前,从而增加相位裕度,防止系统出现振荡或失稳现象。相位补偿算法的核心目标是对信号或系
- 【ai】mocap:conda 安装python3.8+ cuda+ pytorch+torchaudio、torchvision
等风来不如迎风去
AI入门与实战人工智能ubuntuconda
MotionCapubuntu18.04不知道为啥会依赖于ffmpeg、xorg渲染?安装pytorch就是会带上cudacudnn啥的pytorch【ai】tx2nx:安装torch、torchvisionforyolov5这里就发现pytorch和torchvision有依赖关系的,还涉及到rapidjson所以python的环境隔离很重要。核心库-cudatoolkit=11.3-pytor
- 大模型微调
归一码字
人工智能
文章目录前言一、使用的库二、数据预处理1.引入库2.读入数据3.对数据进行预处理4.转换为json格式文件三,使用算子分析数据并进行数据处理四,划分训练集和测试集五,编写训练脚本开始训练六,进行模型推理人工评估总结前言这是使用知乎评论进行模型微调,让模型输出更加通畅接近人的使用语言一、使用的库modelscope:提供模型、数据集下载能力data-juicer:提供数据集处理能力ms-swift:
- 从0到1:小白也能轻松上手的高清电影搜索引擎网站制作指南
计算机学长
网站制作搜索引擎前端服务器
引言在互联网飞速发展的当下,在线观影已成为人们日常娱乐不可或缺的一部分。据相关数据显示,2024年网络视频用户规模达到了惊人的规模,如此庞大的用户群体,对电影资源的需求自然也是水涨船高。然而,面对海量的电影资源,如何快速、准确地找到自己心仪的高清电影,却成了许多影迷的一大难题。各大视频平台资源分散,想要观看不同的电影,往往需要在多个平台之间来回切换,而且还可能面临付费门槛、广告干扰等问题。这时,一
- 基于Wasm的边缘计算Pandas:突破端侧AI的最后一公里——让数据分析在手机、IoT设备上飞驰
Eqwaak00
Pandas人工智能wasm边缘计算pandas架构深度学习
引言:边缘计算的算力觉醒在智能家居设备每秒产生数万条传感器数据、手机App需要实时分析用户行为的今天,传统云计算模式面临高延迟、隐私风险、带宽成本三大挑战。本文将揭示如何通过WebAssembly(Wasm)+Pandas的技术组合,在边缘设备上实现零云端依赖的实时数据分析,并通过智慧工厂设备预测性维护案例,展示从理论到工程的全链路实现。一、技术架构设计1.1边缘计算范式演进mermaid:gra
- 多家车企接入DeepSeek,AI汽车战争爆发,谁站上风口,谁会下牌桌?
高工智能汽车
人工智能汽车
日前,多家车企宣布接入DeepSeek。在吉利汽车、岚图汽车率先宣布后,东风汽车、零跑汽车、奇瑞、上汽集团、长城几家车企也紧随其后。其中东风汽车宣布旗下自主品牌已完成DeepSeek全系列大语言模型接入工作,并将于近期陆续搭载应用于包括东风岚图、东风猛士、东风奕派、东风风神、东风纳米在内的东风自主品牌车型。其中岚图品牌方面,岚图知音将成为汽车行业首个融合DeepSeek的量产车型,全新岚图梦想家也
- 职场人必存!DeepSeek提示词大合集:周报速成、爆款文案、旅行攻略一键生成
阳光永恒736
AI工具人工智能deepseekAI提示词
引言:AI时代,为什么你的提示词总“词不达意”?“同样的AI工具,同事用DeepSeek半小时写完周报还附赠数据分析图,我却只会问‘帮我总结本周工作’?”这可能是多数职场人的真实写照。AI工具的能力边界早已超越基础问答,但90%的用户仍停留在“无效提问”阶段10。而真正拉开差距的,是一套精准的提示词指令库——它能将模糊需求转化为AI可执行的“操作指南”,让效率提升10倍不止。一、职场效率:从“加班
- AI 大模型应用数据中心的数据清洗工具
SuperAGI2025
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
1.背景介绍在人工智能大模型应用的浪潮中,数据清洗作为数据预处理的重要环节,对于提升模型性能和可靠性具有至关重要的作用。数据中心作为人工智能模型的运行环境,面临着海量数据流和多样化的数据类型,如何高效、准确地进行数据清洗,成为应用大模型的关键问题之一。本文将详细介绍AI大模型应用数据中心的数据清洗工具,包括核心概念、算法原理、具体操作步骤、应用场景等,旨在为AI大模型的实际应用提供参考。2.核心概
- AI 大模型应用数据中心的数据迁移架构
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能
AI大模型、数据中心、数据迁移、架构设计、迁移策略、性能优化、安全保障1.背景介绍随着人工智能(AI)技术的飞速发展,大规模AI模型的应用日益广泛,涵盖了自然语言处理、计算机视觉、语音识别等多个领域。这些AI模型通常需要海量的数据进行训练和推理,因此数据中心作为AI应用的基础设施,显得尤为重要。然而,随着AI模型规模的不断扩大,数据中心面临着新的挑战:数据规模庞大:AI模型的训练和推理需要海量数据
- 区块链驱动金融第二章 —— 探秘比特币的去中心化之路
小DuDu
区块链技术驱动金融区块链
在当今数字化时代,比特币作为一种新兴的数字货币,其去中心化的特性备受关注。它打破了传统金融体系中对中心化机构的依赖,构建起一个独特的信任机制。这背后究竟隐藏着怎样的奥秘?让我们一同深入揭开比特币去中心化的神秘面纱。比特币去中心化的多面剖析去中心化的概念辨析在探讨比特币如何去中心化之前,我们需要明确去中心化的概念。去中心化并非比特币所独有,在互联网、电子邮件等领域都有体现。并且,没有一个系统是完全中
- Oracle数据库从入门到精通系列之六:临时文件
快乐骑行^_^
数据库日常分享专栏Oracle数据库临时文件
Oracle数据库从入门到精通系列之六:临时文件Oracle中的临时数据文件是一种特殊类型的数据文件。当内存不足时,Oracle会使用它来存储一些临时数据,比如说一些比较大的排序或散列操作的中间结果、临时表中的数据以及结果集数据等。自12c起,对临时表的操作所产生的undo也会放到临时表空间中永久性的表和索引永远不会存储在临时表空间中,但是临时表中的数据及其索引会存放在这里。也就是应用程序储存数据
- 需求分析与问题定义原理与代码实战案例讲解
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
需求分析与问题定义原理与代码实战案例讲解作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来在软件工程领域,需求分析与问题定义是至关重要的环节。它们决定了软件项目的成功与否,直接影响着软件的质量、成本和交付时间。随着软件项目的复杂性和规模日益增加,对需求分析与问题定义的要求也越来越高。本文将深入探讨需求分析与问题定义的原理,并
- 部分标签数据集生成与过滤特定标签方法
阳光明媚大男孩
机器学习人工智能
完整代码总结这段代码的目的是通过构建一个部分标签学习(PartialLabelLearning,PLL)框架来生成一个包含部分标签的数据集,并且支持根据给定的标签列表对数据集进行筛选和过滤。代码包含了多个类和函数,主要分为以下几部分:数据预处理与加载:使用PyTorch和torchvision来加载CIFAR-10数据集,并对其进行标准化处理。部分标签数据集的生成:为每个样本生成多个候选标签,并模
- 如何判断自己是否是一位合格的项目经理?
在快速变化的商业环境中,项目经理的角色早已从"任务执行者"进化为"战略推动者"。一位合格的项目经理不仅需要具备扎实的专业知识,更需要在复杂环境中协调资源、化解冲突并推动目标达成。本文将从项目经理的能力模型、项目全流程的关键环节评估标准以及自我检验方法三个维度,系统性地探讨如何判断自身是否胜任这一角色。一、项目经理的黄金三角能力模型硬技能基石(30%)体系化知识结构:掌握PMBOK七大知识领域(范围
- 在LangChain中传递运行时值给工具
bavDHAUO
langchainwindowspython
在使用LangChain开发智能应用时,我们经常需要将一些运行时的参数传递给工具。这些参数可能在请求时才被确定,比如请求用户的ID。在大多数情况下,这些参数不应该由LLM(大语言模型)控制,因为这样可能存在安全风险。因此,我们需要一种机制,让LLM只控制那些它需要控制的参数,而其他参数则由应用逻辑来固定。本指南将详细介绍如何在LangChain中实现这一点,即防止模型生成某些工具参数,并在运行时进
- gralloc usage flags
Damon_X
gralloc
下面这些示例主要说明了grallocusageflags在图像处理和多媒体应用中如何影响性能和正确性。让我们逐个详细分析每个问题的根因和修复方案,并深入解析gralloc标志对缓存管理和数据流的影响。✅Example1:长曝光快照耗时异常问题描述症状:长曝光快照(longexposuresnapshot)在某些内存优化后,拍摄时间异常变长。根因:第三方算法在多个快照帧上执行,耗时约1.2秒。Buf
- 使用spring data MongoDB对MongoDB进行简单CURD操作示例
其实我就是个萌新
springmongodbjava
本文章为作者个人学习笔记,仅作参考。1.application.properties配置spring.data.mongodb.database=[数据库名]spring.data.mongodb.host=localhost[主机名,本机:localhost]spring.data.mongodb.port=[数据库端口,默认:27017]2.根据数据库文档定义实体类:@RequiredArgs
- MySQL InnoDB 存储引擎详解
drebander
数据库mysqlandroid数据库
InnoDB是MySQL中最常用、最强大的存储引擎之一,其支持事务、外键、行级锁等特性,非常适合对可靠性、并发性要求较高的场景。本文将详细解析InnoDB的核心特性、内部机制以及使用场景,帮助你更好地理解和优化MySQL数据库。1.为什么选择InnoDB存储引擎InnoDB是MySQL默认的存储引擎(从MySQL5.5开始)。相比其他存储引擎(如MyISAM),InnoDB的优势在于:支持事务:遵
- 运维颠覆!一文解锁AI赋能运维实战秘籍,效率飙升!
ivwdcwso
运维人工智能运维机器学习智能运维自动化运维故障预测
导语在科技飞速发展的当下,运维领域正经历着深刻变革,AI的融入成为提升运维效率与质量的关键。然而,许多运维人员虽对AI满怀期待,却不知如何将其真正落地到实际工作中。本文将深入实战,带你领略AI如何在运维各环节大显身手,让你的运维工作开启智能高效新模式。一、AI在故障预测与诊断中的实战故障预测实战数据收集:以Linux服务器为例,利用Prometheus监控工具收集服务器的CPU使用率、内存使用率、
- 【DeepSeek干货总结】对不同类型学术内容进行润色的顶级提示词汇总!
AIWritePaper官方账号
DeepSeekPromptAIWritePaperAIWritePaperdeepseek深度学习人工智能AIGC论文润色
目录1.英文润色2.中文润色3.SCI润色4.润色Prompt汇总连贯性与句子逻辑提示词多参考版本提示词语法矫正提示词润色内容定位提示词修改建议提示词大家好这里是AIWritePaper官方账号!AIWritePaper官网AIWritePaper宝子们在写学术论文的过程中要想让DeepSeek发挥出最佳效能,尤其在进行文本润色时,精确和具体的提示词至关重要。很多宝子们在请求DeepSeek文本润
- 5分钟科普:AI网关是什么?应用场景是什么?有没有开源的选择?
阿里-于怀
机器学习
AI网关的功能及其定义AI网关位于企业应用与内外部大模型调用的交汇点,能够灵活地将请求转发给内部自建模型或外部大模型服务提供商,甚至海外的服务商。它管理着企业所有的AI出口流量,为企业内的不同团队提供了多方面的优势。对于开发团队而言,AI网关简化了模型的选择和使用过程,让他们可以专注于产品的快速迭代而无需担心成本控制或复杂的申请流程。针对安全和治理方面的团队而言,AI网关通过实施访问控制、加密传输
- Postman高级功能深度解析:Mock Server与自动化监控——构建高效API测试与监控体系
测试渣
测试工具postman
引言:Postman在API开发中的核心价值在数字化时代,API(应用程序编程接口)已成为系统间交互的“神经网络”,其质量直接影响用户体验与业务连续性。然而,传统API测试面临两大挑战:开发阶段依赖:前端与后端团队需同步开发,导致进度延迟;测试环境复杂:生产数据敏感、测试场景覆盖不全、性能压力模拟困难。Postman作为全球领先的API开发与测试工具,通过其MockServer与自动化监控两大核心
- 金融风控算法透明度与可解释性优化
智能计算研究中心
其他
内容概要金融风控算法的透明化研究面临模型复杂性提升与监管合规要求的双重挑战。随着深度学习框架在特征提取环节的广泛应用,算法可解释性与预测精度之间的平衡成为核心议题。本文从联邦学习架构下的数据协作机制出发,结合特征工程优化与超参数调整技术,系统性分析逻辑回归、随机森林等传统算法在召回率、F1值等关键指标上的表现差异。研究同时探讨数据预处理流程对风控决策鲁棒性的影响,并提出基于注意力机制的特征权重可视
- ViewController添加button按钮解析。(翻译)
张亚雄
c
<div class="it610-blog-content-contain" style="font-size: 14px"></div>// ViewController.m
// Reservation software
//
// Created by 张亚雄 on 15/6/2.
- mongoDB 简单的增删改查
开窍的石头
mongodb
在上一篇文章中我们已经讲了mongodb怎么安装和数据库/表的创建。在这里我们讲mongoDB的数据库操作
在mongo中对于不存在的表当你用db.表名 他会自动统计
下边用到的user是表明,db代表的是数据库
添加(insert):
- log4j配置
0624chenhong
log4j
1) 新建java项目
2) 导入jar包,项目右击,properties—java build path—libraries—Add External jar,加入log4j.jar包。
3) 新建一个类com.hand.Log4jTest
package com.hand;
import org.apache.log4j.Logger;
public class
- 多点触摸(图片缩放为例)
不懂事的小屁孩
多点触摸
多点触摸的事件跟单点是大同小异的,上个图片缩放的代码,供大家参考一下
import android.app.Activity;
import android.os.Bundle;
import android.view.MotionEvent;
import android.view.View;
import android.view.View.OnTouchListener
- 有关浏览器窗口宽度高度几个值的解析
换个号韩国红果果
JavaScripthtml
1 元素的 offsetWidth 包括border padding content 整体的宽度。
clientWidth 只包括内容区 padding 不包括border。
clientLeft = offsetWidth -clientWidth 即这个元素border的值
offsetLeft 若无已定位的包裹元素
- 数据库产品巡礼:IBM DB2概览
蓝儿唯美
db2
IBM DB2是一个支持了NoSQL功能的关系数据库管理系统,其包含了对XML,图像存储和Java脚本对象表示(JSON)的支持。DB2可被各种类型的企 业使用,它提供了一个数据平台,同时支持事务和分析操作,通过提供持续的数据流来保持事务工作流和分析操作的高效性。 DB2支持的操作系统
DB2可应用于以下三个主要的平台:
工作站,DB2可在Linus、Unix、Windo
- java笔记5
a-john
java
控制执行流程:
1,true和false
利用条件表达式的真或假来决定执行路径。例:(a==b)。它利用条件操作符“==”来判断a值是否等于b值,返回true或false。java不允许我们将一个数字作为布尔值使用,虽然这在C和C++里是允许的。如果想在布尔测试中使用一个非布尔值,那么首先必须用一个条件表达式将其转化成布尔值,例如if(a!=0)。
2,if-els
- Web开发常用手册汇总
aijuans
PHP
一门技术,如果没有好的参考手册指导,很难普及大众。这其实就是为什么很多技术,非常好,却得不到普遍运用的原因。
正如我们学习一门技术,过程大概是这个样子:
①我们日常工作中,遇到了问题,困难。寻找解决方案,即寻找新的技术;
②为什么要学习这门技术?这门技术是不是很好的解决了我们遇到的难题,困惑。这个问题,非常重要,我们不是为了学习技术而学习技术,而是为了更好的处理我们遇到的问题,才需要学习新的
- 今天帮助人解决的一个sql问题
asialee
sql
今天有个人问了一个问题,如下:
type AD value
A  
- 意图对象传递数据
百合不是茶
android意图IntentBundle对象数据的传递
学习意图将数据传递给目标活动; 初学者需要好好研究的
1,将下面的代码添加到main.xml中
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http:/
- oracle查询锁表解锁语句
bijian1013
oracleobjectsessionkill
一.查询锁定的表
如下语句,都可以查询锁定的表
语句一:
select a.sid,
a.serial#,
p.spid,
c.object_name,
b.session_id,
b.oracle_username,
b.os_user_name
from v$process p, v$s
- mac osx 10.10 下安装 mysql 5.6 二进制文件[tar.gz]
征客丶
mysqlosx
场景:在 mac osx 10.10 下安装 mysql 5.6 的二进制文件。
环境:mac osx 10.10、mysql 5.6 的二进制文件
步骤:[所有目录请从根“/”目录开始取,以免层级弄错导致找不到目录]
1、下载 mysql 5.6 的二进制文件,下载目录下面称之为 mysql5.6SourceDir;
下载地址:http://dev.mysql.com/downl
- 分布式系统与框架
bit1129
分布式
RPC框架 Dubbo
什么是Dubbo
Dubbo是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案。其核心部分包含: 远程通讯: 提供对多种基于长连接的NIO框架抽象封装,包括多种线程模型,序列化,以及“请求-响应”模式的信息交换方式。 集群容错: 提供基于接
- 那些令人蛋痛的专业术语
白糖_
springWebSSOIOC
spring
【控制反转(IOC)/依赖注入(DI)】:
由容器控制程序之间的关系,而非传统实现中,由程序代码直接操控。这也就是所谓“控制反转”的概念所在:控制权由应用代码中转到了外部容器,控制权的转移,是所谓反转。
简单的说:对象的创建又容器(比如spring容器)来执行,程序里不直接new对象。
Web
【单点登录(SSO)】:SSO的定义是在多个应用系统中,用户
- 《给大忙人看的java8》摘抄
braveCS
java8
函数式接口:只包含一个抽象方法的接口
lambda表达式:是一段可以传递的代码
你最好将一个lambda表达式想象成一个函数,而不是一个对象,并记住它可以被转换为一个函数式接口。
事实上,函数式接口的转换是你在Java中使用lambda表达式能做的唯一一件事。
方法引用:又是要传递给其他代码的操作已经有实现的方法了,这时可以使
- 编程之美-计算字符串的相似度
bylijinnan
java算法编程之美
public class StringDistance {
/**
* 编程之美 计算字符串的相似度
* 我们定义一套操作方法来把两个不相同的字符串变得相同,具体的操作方法为:
* 1.修改一个字符(如把“a”替换为“b”);
* 2.增加一个字符(如把“abdd”变为“aebdd”);
* 3.删除一个字符(如把“travelling”变为“trav
- 上传、下载压缩图片
chengxuyuancsdn
下载
/**
*
* @param uploadImage --本地路径(tomacat路径)
* @param serverDir --服务器路径
* @param imageType --文件或图片类型
* 此方法可以上传文件或图片.txt,.jpg,.gif等
*/
public void upload(String uploadImage,Str
- bellman-ford(贝尔曼-福特)算法
comsci
算法F#
Bellman-Ford算法(根据发明者 Richard Bellman 和 Lester Ford 命名)是求解单源最短路径问题的一种算法。单源点的最短路径问题是指:给定一个加权有向图G和源点s,对于图G中的任意一点v,求从s到v的最短路径。有时候这种算法也被称为 Moore-Bellman-Ford 算法,因为 Edward F. Moore zu 也为这个算法的发展做出了贡献。
与迪科
- oracle ASM中ASM_POWER_LIMIT参数
daizj
ASMoracleASM_POWER_LIMIT磁盘平衡
ASM_POWER_LIMIT
该初始化参数用于指定ASM例程平衡磁盘所用的最大权值,其数值范围为0~11,默认值为1。该初始化参数是动态参数,可以使用ALTER SESSION或ALTER SYSTEM命令进行修改。示例如下:
SQL>ALTER SESSION SET Asm_power_limit=2;
- 高级排序:快速排序
dieslrae
快速排序
public void quickSort(int[] array){
this.quickSort(array, 0, array.length - 1);
}
public void quickSort(int[] array,int left,int right){
if(right - left <= 0
- C语言学习六指针_何谓变量的地址 一个指针变量到底占几个字节
dcj3sjt126com
C语言
# include <stdio.h>
int main(void)
{
/*
1、一个变量的地址只用第一个字节表示
2、虽然他只使用了第一个字节表示,但是他本身指针变量类型就可以确定出他指向的指针变量占几个字节了
3、他都只存了第一个字节地址,为什么只需要存一个字节的地址,却占了4个字节,虽然只有一个字节,
但是这些字节比较多,所以编号就比较大,
- phpize使用方法
dcj3sjt126com
PHP
phpize是用来扩展php扩展模块的,通过phpize可以建立php的外挂模块,下面介绍一个它的使用方法,需要的朋友可以参考下
安装(fastcgi模式)的时候,常常有这样一句命令:
代码如下:
/usr/local/webserver/php/bin/phpize
一、phpize是干嘛的?
phpize是什么?
phpize是用来扩展php扩展模块的,通过phpi
- Java虚拟机学习 - 对象引用强度
shuizhaosi888
JAVA虚拟机
本文原文链接:http://blog.csdn.net/java2000_wl/article/details/8090276 转载请注明出处!
无论是通过计数算法判断对象的引用数量,还是通过根搜索算法判断对象引用链是否可达,判定对象是否存活都与“引用”相关。
引用主要分为 :强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Wea
- .NET Framework 3.5 Service Pack 1(完整软件包)下载地址
happyqing
.net下载framework
Microsoft .NET Framework 3.5 Service Pack 1(完整软件包)
http://www.microsoft.com/zh-cn/download/details.aspx?id=25150
Microsoft .NET Framework 3.5 Service Pack 1 是一个累积更新,包含很多基于 .NET Framewo
- JAVA定时器的使用
jingjing0907
javatimer线程定时器
1、在应用开发中,经常需要一些周期性的操作,比如每5分钟执行某一操作等。
对于这样的操作最方便、高效的实现方式就是使用java.util.Timer工具类。
privatejava.util.Timer timer;
timer = newTimer(true);
timer.schedule(
newjava.util.TimerTask() { public void run()
- Webbench
流浪鱼
webbench
首页下载地址 http://home.tiscali.cz/~cz210552/webbench.html
Webbench是知名的网站压力测试工具,它是由Lionbridge公司(http://www.lionbridge.com)开发。
Webbench能测试处在相同硬件上,不同服务的性能以及不同硬件上同一个服务的运行状况。webbench的标准测试可以向我们展示服务器的两项内容:每秒钟相
- 第11章 动画效果(中)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- windows下制作bat启动脚本.
sanyecao2314
javacmd脚本bat
java -classpath C:\dwjj\commons-dbcp.jar;C:\dwjj\commons-pool.jar;C:\dwjj\log4j-1.2.16.jar;C:\dwjj\poi-3.9-20121203.jar;C:\dwjj\sqljdbc4.jar;C:\dwjj\voucherimp.jar com.citsamex.core.startup.MainStart
- Java进行RSA加解密的例子
tomcat_oracle
java
加密是保证数据安全的手段之一。加密是将纯文本数据转换为难以理解的密文;解密是将密文转换回纯文本。 数据的加解密属于密码学的范畴。通常,加密和解密都需要使用一些秘密信息,这些秘密信息叫做密钥,将纯文本转为密文或者转回的时候都要用到这些密钥。 对称加密指的是发送者和接收者共用同一个密钥的加解密方法。 非对称加密(又称公钥加密)指的是需要一个私有密钥一个公开密钥,两个不同的密钥的
- Android_ViewStub
阿尔萨斯
ViewStub
public final class ViewStub extends View
java.lang.Object
android.view.View
android.view.ViewStub
类摘要: ViewStub 是一个隐藏的,不占用内存空间的视图对象,它可以在运行时延迟加载布局资源文件。当 ViewSt