LeetCode.1137-第N个泰波那契数(N-th Tribonacci Number)

这是小川的第409次更新,第441篇原创

看题和准备

今天介绍的是LeetCode算法题中Easy级别的第260题(顺位题号是1137)。Tribonacci(泰波那契)序列Tn定义如下:

对于n> = 0,T0 = 0,T1 = 1,T2 = 1,并且T(n+3) = T(n) + T(n+1) + T(n+2)

给定n,返回Tn的值。

例如:

输入:n = 4
输出:4
说明:
T_3 = 0 + 1 + 1 = 2
T_4 = 1 + 1 + 2 = 4

输入:n = 25
输出:1389537

注意

  • 0 <= n <= 37

  • 答案保证小于32位整数,即 答案 <= 231 - 1。

第一种解法

泰波那契,和斐波那契数列相似,只是比斐波那契数列多了一项,后一项的值为前三项的值之和。

暴力解法,直接使用递归,会超时

public int tribonacci(int n) {
    if (n <= 2) {
        return n == 0 ? 0 : 1;
    }
    return tribonacci(n-1)+tribonacci(n-2)+tribonacci(n-3);
}


第二种解法

在第一种解法中,使用了递归,虽然代码变简单了,但是多了许多重复计算,比如T(4) = T(3)+T(2)+T(1) = T(0)+T(1)+T(2)+T(2)+T(1),只是计算n为4时,就计算了两次n为0和n为1,当n更大时,重复的计算会严重影响代码计算速度。

我们可以使用数组,将每一步的计算结果都保存起来,当新的一项需要前面三项的计算结果时,可以直接从数组中取,减少不必要的重复计算。

此解法的时间复杂度是O(N),空间复杂度为O(N),使用了一个容量为n+1的数组。

public int tribonacci2(int n) {
    if (n <= 2) {
        return n == 0 ? 0 : 1;
    }
    int[] arr = new int[n+1];
    arr[1] = arr[2] = 1;
    for (int i=3, len=arr.length; i


第三种解法

在第二种解法的基础上,我们还可以继续优化。

泰波那契数列中,新的一项需要借助前三项的值得到,例如T(6) = T(5)+T(4)+T(3),在第二种解法中,我们却将T(0)T(1)T(2)的值都存起来了,但是计算T(6)又用不到T(0)T(1)T(2),浪费了存储空间。对此,我们可以使用局部变量替换数组,只保留前三项的值,每次计算完新的一项值后,更新一次前三项的值即可。

此解法的时间复杂度是O(N),空间复杂度为O(1),只使用了4个局部变量。

public int tribonacci3(int n) {
    if (n <= 2) {
        return n == 0 ? 0 : 1;
    }
    int T0 = 0, T1 = 1, T2 = 1;
    int temp = 0;
    for (int i=3; i


小结

算法专题目前已更新LeetCode算法题文章266+篇,公众号对话框回复【数据结构与算法】、【算法】、【数据结构】中的任一关键词,获取系列文章合集。

以上就是全部内容,如果大家有什么好的解法思路、建议或者其他问题,可以下方留言交流,点赞、留言、转发就是对我最大的回报和支持!

你可能感兴趣的:(LeetCode.1137-第N个泰波那契数(N-th Tribonacci Number))