大数据集群环境搭建之一 hadoop-ha高可用安装

1、如果你使用root用户进行安装。 vi /etc/profile 即可 系统变量

2、如果你使用普通用户进行安装。 vi ~/.bashrc 用户变量

export HADOOP_HOME=/export/servers/hadoop-2.8.5

export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin:

同步配置文件

[root@jiang01 servers]# vi /etc/profile

[root@jiang01 servers]#

[root@jiang01 servers]# xrsync.sh /etc/profile

=========== jiang02 : /etc/profile ===========

命令执行成功

=========== jiang03 : /etc/profile ===========

命令执行成功

[root@jiang01 servers]#

刷新配置各个机器配置:

source /etc/profile

修改下面各个配置文件:

"1.0" encoding="UTF-8"?>
"text/xsl" href="configuration.xsl"?>





        
    
        fs.defaultFS
        hdfs://myha01/
    
        
    
        hadoop.tmp.dir
        /export/servers/hadoop-2.8.5/hadoopDatas/tempDatas
    
        
    
        ha.zookeeper.quorum
        jiang01:2181,jiang02:2181,jiang03:2181
    
core-site.xml
"1.0" encoding="UTF-8"?>
"text/xsl" href="configuration.xsl"?>





    
    
        dfs.nameservices
        myha01
    
    
    
        dfs.ha.namenodes.myha01
        nn1,nn2
    
    
    
        dfs.namenode.rpc-address.myha01.nn1
        jiang01:9000
    
    
    
        dfs.namenode.http-address.myha01.nn1
        jiang01:50070
    
    
    
        dfs.namenode.rpc-address.myha01.nn2
        jiang02:9000
    
    
    
        dfs.namenode.http-address.myha01.nn2
        jiang02:50070
    
    
    
        dfs.namenode.shared.edits.dir
        qjournal://jiang01:8485;jiang02:8485;jiang03:8485/myha01
    
    
    
        dfs.journalnode.edits.dir
        /opt/hadoop-2.8.5/journal
    
    
    
        dfs.ha.automatic-failover.enabled
        true
    
    
    
        dfs.client.failover.proxy.provider.myha01
        org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider
    
    
    
        dfs.ha.fencing.methods
        sshfence
    
    
    
        dfs.ha.fencing.ssh.private-key-files
        /root/.ssh/id_dsa
    
hdfs-site.xml
"1.0"?>


   

        
            yarn.resourcemanager.ha.enabled
            true
        
        
        
            yarn.resourcemanager.cluster-id
            yrc
        
        
        
            yarn.resourcemanager.ha.rm-ids
            rm1,rm2
        
        
        
            yarn.resourcemanager.hostname.rm1
            jiang02
        
        
            yarn.resourcemanager.hostname.rm2
            jiang03
        
        
        
            yarn.resourcemanager.zk-address
            jiang01:2181,jiang02:2181,jiang03:2181
        
        
            yarn.nodemanager.aux-services
            mapreduce_shuffle
        
yarn-site.xml
"1.0"?>
"text/xsl" href="configuration.xsl"?>





         
    
        mapreduce.framework.name
        yarn
    
mapred-site.xml
[root@jiang01 servers]#  hadoop version
Hadoop 2.8.5
Subversion https://git-wip-us.apache.org/repos/asf/hadoop.git -r 0b8464d75227fcee2c6e7f2410377b3d53d3d5f8
Compiled by jdu on 2018-09-10T03:32Z
Compiled with protoc 2.5.0
From source with checksum 9942ca5c745417c14e318835f420733
This command was run using /export/servers/hadoop-2.8.5/share/hadoop/common/hadoop-common-2.8.5.jar
[root@jiang01 servers]#
查看hadoop版本

启动zk

[root@jiang01 servers]# 
[root@jiang01 servers]# xcall.sh jps -l
============= jiang01 : jps -l ============
10262 org.apache.zookeeper.server.quorum.QuorumPeerMain
10571 sun.tools.jps.Jps
命令执行成功
============= jiang02 : jps -l ============
10162 sun.tools.jps.Jps
9991 org.apache.zookeeper.server.quorum.QuorumPeerMain
命令执行成功
============= jiang03 : jps -l ============
2275 org.apache.zookeeper.server.quorum.QuorumPeerMain
2436 sun.tools.jps.Jps
命令执行成功
[root@jiang01 servers]# xcall.sh zkServer.sh status
============= jiang01 : zkServer.sh status ============
ZooKeeper JMX enabled by default
Using config: /export/servers/zookeeper-3.4.14/bin/../conf/zoo.cfg
Mode: follower
命令执行成功
============= jiang02 : zkServer.sh status ============
ZooKeeper JMX enabled by default
Using config: /export/servers/zookeeper-3.4.14/bin/../conf/zoo.cfg
Mode: leader
命令执行成功
============= jiang03 : zkServer.sh status ============
ZooKeeper JMX enabled by default
Using config: /export/servers/zookeeper-3.4.14/bin/../conf/zoo.cfg
Mode: follower
命令执行成功
[root@jiang01 servers]#
启动zk

在你配置的各个journalnode节点启动该进程

[root@jiang01 servers]# 
[root@jiang01 servers]# xcall.sh hadoop-daemon.sh start journalnode
============= jiang01 : hadoop-daemon.sh start journalnode ============
starting journalnode, logging to /export/servers/hadoop-2.8.5/logs/hadoop-root-journalnode-jiang01.out
命令执行成功
============= jiang02 : hadoop-daemon.sh start journalnode ============
starting journalnode, logging to /export/servers/hadoop-2.8.5/logs/hadoop-root-journalnode-jiang02.out
命令执行成功
============= jiang03 : hadoop-daemon.sh start journalnode ============
starting journalnode, logging to /export/servers/hadoop-2.8.5/logs/hadoop-root-journalnode-jiang03.out
命令执行成功
[root@jiang01 servers]#
启动journalnode

大数据集群环境搭建之一 hadoop-ha高可用安装_第1张图片

 

 

 先选取一个namenode(jiang01)节点进行格式化

[root@jiang01 servers]# hadoop namenode -format
View Code

大数据集群环境搭建之一 hadoop-ha高可用安装_第2张图片

 

 

 

格式化zkfc,只能在nameonde节点进行

主节点上面启动 dfs文件系统:

[root@jiang01 dfs]# start-dfs.sh

大数据集群环境搭建之一 hadoop-ha高可用安装_第3张图片

 

 

 jiang002启动yarm

[root@jiang02 mapreduce]# start-yarn.sh
starting yarn daemons
starting resourcemanager, logging to /export/servers/hadoop-2.8.5/logs/yarn-root-resourcemanager-jiang02.out
jiang03: starting nodemanager, logging to /export/servers/hadoop-2.8.5/logs/yarn-root-nodemanager-jiang03.out
jiang01: starting nodemanager, logging to /export/servers/hadoop-2.8.5/logs/yarn-root-nodemanager-jiang01.out
jiang02: starting nodemanager, logging to /export/servers/hadoop-2.8.5/logs/yarn-root-nodemanager-jiang02.out
[root@jiang02 mapreduce]# 
View Code

jiang03启动:resourcemanager

[root@jiang03 hadoopDatas]#  yarn-daemon.sh start resourcemanager
starting resourcemanager, logging to /export/servers/hadoop-2.8.5/logs/yarn-root-resourcemanager-jiang03.out
View Code

hadoop wordcount程序启动:

1  cd /export/servers/hadoop-2.8.5/share/hadoop/mapreduce/

2 生成数据文件:

touch word.txt
echo "hello world" >> word.txt
echo "hello hadoop" >> word.txt
echo "hello hive" >> word.txt

3 创建hadoop 文件目录

hdfs dfs -mkdir -p /work/data/input

4 向hadoop上传数据文件

hdfs dfs -put ./word.txt /work/data/input

5 计算例子

hadoop jar hadoop-mapreduce-examples-2.8.5.jar wordcount /work/data/input /work/data/output

6 查看结果:

[root@jiang01 mapreduce]# hadoop jar hadoop-mapreduce-examples-2.8.5.jar wordcount /work/data/input /work/data/output
19/10/09 11:44:48 INFO input.FileInputFormat: Total input files to process : 1
19/10/09 11:44:48 INFO mapreduce.JobSubmitter: number of splits:1
19/10/09 11:44:48 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1570635804389_0001
19/10/09 11:44:48 INFO impl.YarnClientImpl: Submitted application application_1570635804389_0001
19/10/09 11:44:48 INFO mapreduce.Job: The url to track the job: http://jiang02:8088/proxy/application_1570635804389_0001/
19/10/09 11:44:48 INFO mapreduce.Job: Running job: job_1570635804389_0001
19/10/09 11:45:00 INFO mapreduce.Job: Job job_1570635804389_0001 running in uber mode : false
19/10/09 11:45:00 INFO mapreduce.Job:  map 0% reduce 0%
19/10/09 11:45:11 INFO mapreduce.Job:  map 100% reduce 0%
19/10/09 11:45:20 INFO mapreduce.Job:  map 100% reduce 100%
19/10/09 11:45:20 INFO mapreduce.Job: Job job_1570635804389_0001 completed successfully
19/10/09 11:45:21 INFO mapreduce.Job: Counters: 49
        File System Counters
                FILE: Number of bytes read=54
                FILE: Number of bytes written=321397
                FILE: Number of read operations=0
                FILE: Number of large read operations=0
                FILE: Number of write operations=0
                HDFS: Number of bytes read=139
                HDFS: Number of bytes written=32
                HDFS: Number of read operations=6
                HDFS: Number of large read operations=0
                HDFS: Number of write operations=2
        Job Counters 
                Launched map tasks=1
                Launched reduce tasks=1
                Data-local map tasks=1
                Total time spent by all maps in occupied slots (ms)=8790
                Total time spent by all reduces in occupied slots (ms)=6229
                Total time spent by all map tasks (ms)=8790
                Total time spent by all reduce tasks (ms)=6229
                Total vcore-milliseconds taken by all map tasks=8790
                Total vcore-milliseconds taken by all reduce tasks=6229
                Total megabyte-milliseconds taken by all map tasks=9000960
                Total megabyte-milliseconds taken by all reduce tasks=6378496
        Map-Reduce Framework
                Map input records=3
                Map output records=6
                Map output bytes=60
                Map output materialized bytes=54
                Input split bytes=103
                Combine input records=6
                Combine output records=4
                Reduce input groups=4
                Reduce shuffle bytes=54
                Reduce input records=4
                Reduce output records=4
                Spilled Records=8
                Shuffled Maps =1
                Failed Shuffles=0
                Merged Map outputs=1
                GC time elapsed (ms)=199
                CPU time spent (ms)=1320
                Physical memory (bytes) snapshot=325742592
                Virtual memory (bytes) snapshot=4161085440
                Total committed heap usage (bytes)=198316032
        Shuffle Errors
                BAD_ID=0
                CONNECTION=0
                IO_ERROR=0
                WRONG_LENGTH=0
                WRONG_MAP=0
                WRONG_REDUCE=0
        File Input Format Counters 
                Bytes Read=36
        File Output Format Counters 
                Bytes Written=32
View Code

大数据集群环境搭建之一 hadoop-ha高可用安装_第4张图片

 

你可能感兴趣的:(大数据集群环境搭建之一 hadoop-ha高可用安装)