Kubernetes Nvidia GPU Monitor & Grafana Dashboard

▶ Export Metrics

1、Prerequisites

  • NVIDIA Tesla drivers = R384+ (download from NVIDIA Driver Downloads page)
  • nvidia-docker version > 2.0 (see how to install and it's prerequisites#prerequisites))
  • Optionally configure docker to set your default runtime to nvidia
  • NVIDIA device plugin for Kubernetes (see how to install)

2、Create PVC

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: prometheus-gpu-pvc
  namespace: kube-system
spec:
  accessModes:
    - ReadWriteMany
  volumeMode: Filesystem
  resources:
    requests:
      storage: 10Gi

3、Run DaementSet, Run Pod On GPU Node

apiVersion: apps/v1
kind: DaemonSet
metadata:
  name: prometheus-gpu
  namespace: kube-system
spec:
  revisionHistoryLimit: 3
  selector:
    matchLabels:
      k8s-app: prometheus-gpu
  template:
    metadata:
      labels:
        k8s-app: prometheus-gpu
    spec:
      nodeSelector:
        kubernetes.io/hostname: gpu
      volumes:
        - name: prometheus
          persistentVolumeClaim:
            claimName: prometheus-gpu-pvc
        - name: proc
          hostPath:
            path: /proc
        - name: sys
          hostPath:
            path: /sys
      serviceAccountName: admin-user
      containers:
        - name: dcgm-exporter
          image: "nvidia/dcgm-exporter"
          volumeMounts:
            - name: prometheus
              mountPath: /run/prometheus/
          imagePullPolicy: Always
          securityContext:
            runAsNonRoot: false
            runAsUser: 0
          env:
            - name: DEPLOY_TIME
              value: {{ ansible_date_time.iso8601 }}
        - name: node-exporter
          image: "quay.io/prometheus/node-exporter"
          args:
            - "--web.listen-address=0.0.0.0:9100"
            - "--path.procfs=/host/proc"
            - "--path.sysfs=/host/sys"
            - "--collector.textfile.directory=/run/prometheus"
            - "--no-collector.arp"
            - "--no-collector.bcache"
            - "--no-collector.bonding"
            - "--no-collector.conntrack"
            - "--no-collector.cpu"
            - "--no-collector.diskstats"
            - "--no-collector.edac"
            - "--no-collector.entropy"
            - "--no-collector.filefd"
            - "--no-collector.filesystem"
            - "--no-collector.hwmon"
            - "--no-collector.infiniband"
            - "--no-collector.ipvs"
            - "--no-collector.loadavg"
            - "--no-collector.mdadm"
            - "--no-collector.meminfo"
            - "--no-collector.netdev"
            - "--no-collector.netstat"
            - "--no-collector.nfs"
            - "--no-collector.nfsd"
            - "--no-collector.sockstat"
            - "--no-collector.stat"
            - "--no-collector.time"
            - "--no-collector.timex"
            - "--no-collector.uname"
            - "--no-collector.vmstat"
            - "--no-collector.wifi"
            - "--no-collector.xfs"
            - "--no-collector.zfs"
          volumeMounts:
            - name: prometheus
              mountPath: /run/prometheus/
            - name: proc
              readOnly:  true
              mountPath: /host/proc
            - name: sys
              readOnly: true
              mountPath: /host/sys
          imagePullPolicy: Always
          env:
            - name: DEPLOY_TIME
              value: {{ ansible_date_time.iso8601 }}
          ports:
            - containerPort: 9100

More info, please see https://github.com/NVIDIA/gpu-monitoring-tools

4、Create Service

kind: Service
apiVersion: v1
metadata:
  labels:
    k8s-app: prometheus-gpu
  name: prometheus-gpu-service
  namespace: kube-system
spec:
  ports:
    - port: 9100
      targetPort: 9100
  selector:
    k8s-app: prometheus-gpu

5、Test Metrics

curl prometheus-gpu-service.kube-system:9100/metrics

then you will see some metrics like this:

# HELP dcgm_board_limit_violation Throttling duration due to board limit constraints (in us).
# TYPE dcgm_board_limit_violation counter
dcgm_board_limit_violation{gpu="0",uuid="GPU-a47ee51a-000c-0a26-77cb-6153ec8687b7"} 0
dcgm_board_limit_violation{gpu="1",uuid="GPU-0edfde45-1181-dc4f-947c-eab7c58c10d2"} 0
dcgm_board_limit_violation{gpu="2",uuid="GPU-973ac166-2c6a-12e1-d14d-968237a88104"} 0
dcgm_board_limit_violation{gpu="3",uuid="GPU-1a55c23a-b7d0-e93f-fea6-39c586c9e47b"} 0
# HELP dcgm_dec_utilization Decoder utilization (in %).
# TYPE dcgm_dec_utilization gauge
dcgm_dec_utilization{gpu="0",uuid="GPU-a47ee51a-000c-0a26-77cb-6153ec8687b7"} 0
dcgm_dec_utilization{gpu="1",uuid="GPU-0edfde45-1181-dc4f-947c-eab7c58c10d2"} 0
dcgm_dec_utilization{gpu="2",uuid="GPU-973ac166-2c6a-12e1-d14d-968237a88104"} 0
dcgm_dec_utilization{gpu="3",uuid="GPU-1a55c23a-b7d0-e93f-fea6-39c586c9e47b"} 0
.....

▶ Using Prometheus Collect Metrics

1、Create ConfigMap

apiVersion: v1
kind: ConfigMap
metadata:
  name: prometheus-config
  namespace: kube-system
data:
  prometheus.yml: |
    scrape_configs:
    - job_name: 'gpu'
      honor_labels: true
      static_configs:
        - targets: ['prometheus-gpu-service.kube-system:9100']

2、Create Deployment

apiVersion: apps/v1
kind: Deployment
metadata:
  name: prometheus
  namespace: kube-system
spec:
  replicas: 1
  revisionHistoryLimit: 3
  selector:
    matchLabels:
      k8s-app: prometheus
  template:
    metadata:
      labels:
        k8s-app: prometheus
    spec:
      volumes:
        - name: prometheus
          configMap:
            name: prometheus-config
      serviceAccountName: admin-user
      containers:
        - name: prometheus
          image: "prom/prometheus:latest"
          volumeMounts:
            - name: prometheus
              mountPath: /etc/prometheus/
          imagePullPolicy: Always
          ports:
            - containerPort: 9090
              protocol: TCP

3、Create Service

kind: Service
apiVersion: v1
metadata:
  labels:
    k8s-app: prometheus
  name: prometheus-service
  namespace: kube-system
spec:
  ports:
    - port: 9090
      targetPort: 9090
  selector:
    k8s-app: prometheus

▶ Grafana Dashboard

1、Deploy grafana in your kubernetes cluster

kind: Deployment
apiVersion: apps/v1
metadata:
  name: grafana
  namespace: kube-system
spec:
  replicas: 1
  selector:
    matchLabels:
      k8s-app: grafana
  template:
    metadata:
      labels:
        k8s-app: grafana
    spec:
      containers:
        - name: grafana
          image: grafana/grafana:6.2.5
          env:
            - name: GF_SECURITY_ADMIN_PASSWORD
              value: 
            - name: GF_SECURITY_ADMIN_USER
              value: 
          ports:
            - containerPort: 3000
              protocol: TCP

2、Create Service Expose Your Grafana Service

kind: Service
apiVersion: v1
metadata:
  labels:
    k8s-app: grafana
  name: grafana-service
  namespace: kube-system
spec:
  ports:
    - port: 3000
      targetPort: 3000
      nodePort: 31111
  selector:
    k8s-app: grafana
  type: NodePort

3、Access Grafana

grafana address may be http://:31111/ , username and password is that you config in step 1.

4、Add New DataSource

Click setting -> DateSource -> Add data source -> Prometheus. Config example:

  • Name: Prometheus
  • Default: Yes
  • URL: http://prometheus-service:9090
  • Access: Server
  • Http Method: Get

Then click Save & Test. OK, you can access prometheus data now.

5、Custom GPU Monitoring Dashboard

For example, Show GPU temperature:

# HELP dcgm_gpu_temp GPU temperature (in C).
# TYPE dcgm_gpu_temp gauge
dcgm_gpu_temp{gpu="0",uuid="GPU-a47ee51a-000c-0a26-77cb-6153ec8687b7"} 29
dcgm_gpu_temp{gpu="1",uuid="GPU-0edfde45-1181-dc4f-947c-eab7c58c10d2"} 27
dcgm_gpu_temp{gpu="2",uuid="GPU-973ac166-2c6a-12e1-d14d-968237a88104"} 27
dcgm_gpu_temp{gpu="3",uuid="GPU-1a55c23a-b7d0-e93f-fea6-39c586c9e47b"} 28

Get each gpu temperature by query sum(dcgm_gpu_temp{gpu=~".*"}) by (gpu)

extra query:

  • gpu number: count(dcgm_board_limit_violation)
  • total memory usage rate: sum(dcgm_fb_used) / sum(sum(dcgm_fb_free) + sum(dcgm_fb_used))
  • power draw: sum(dcgm_power_usage{gpu=~".*"}) by (gpu)
  • memory temperature: sum(dcgm_memory_temp{gpu=~".*"}) by (gpu)

你可能感兴趣的:(机器学习)