先搞点基础的
注意注意注意,这里虽然很基础,但是代码应注意:
1、从writer开始后边就错开了
2、writer后可以直接接writer.close,也就是说可以:
writer = tf.summary.FileWriter("./log", graph=g)
writer.close()
import tensorflow as tf
g = tf.Graph()
with g.as_default():
input1 = tf.get_variable("input1", shape=[3], dtype=tf.float32, initializer=tf.constant_initializer([1.0, 2.0, 3.0]))
input2 = tf.get_variable("input2", shape=[3], dtype=tf.float32, initializer=tf.constant_initializer([1.0, 2.0, 3.0]))
with tf.name_scope("add_reault"):
output = tf.add_n([input1, input2], name="add")
writer = tf.summary.FileWriter("./log", graph=g)
with tf.Session(graph=g) as sess:
sess.run(tf.global_variables_initializer())
print(sess.run(output))
writer.close()
对命名空间的操作
注意最后两个命名的方式
1、 tf.get_variable不受tf.name_scope的影响
2、倒数第二个的输出是a/Variable:0
3、tf.Variable()既受tf.variable_scope()的影响也受with tf.name_scope("a"):的影响
import tensorflow as tf
with tf.variable_scope("foo"):
a = tf.get_variable("bar", [1])
print(a.name)
with tf.variable_scope("bar"):
b = tf.get_variable("bar", [1])
print(b.name)
with tf.name_scope("a"):
a = tf.Variable([1])
print(a.name)
a = tf.get_variable("b", [1])
print(a.name)
with tf.variable_scope("b",):
tf.get_variable("b", [1])