在上一篇我们分析了Java NIO的原理和使用方式,本篇将进一步分析Kafka client是如何基于NIO构建自己的network层。
network层的分层架构
下图展示了从最上层的KafkaProducer到最底层的Java NIO的构建层次关系:
图中淡紫色的方框表示接口或者抽象类,白色方框是具体实现。
整个架构图也体现了“面向接口编程”的思想:最底层Java NIO往上层全部以接口形式暴露,上面的3层,也都定义了相应的接口,逐层往上暴露。
接口的实例化(包括KafkaClient, Selectable, ChannelBuilder),也都在最外层的容器类KafkaProducer的构造函数中完成,KafkaProducer也就充当了一个“工厂”的角色,装配所有这些底层组件。
network层组件与NIO组件的映射关系
从上图也可以看出:
KakfaChannel基本是对SocketChannel的封装,只是这个中间多个一个间接层:TransportLayer,为了封装普通和加密的Channel;
Send/NetworkReceive是对ByteBuffer的封装,表示一次请求的数据包;
Kafka的Selector封装了NIO的Selector,内含一个NIO Selector对象。
Kafka Selector实现思路
1.从上图可以看出, Selector内部包含一个Map, 也就是它维护了所有连接的连接池。这些KafkaChannel都由ChannelBuilder接口创建。
private final Map channels;
2.所有的io操作:connect, read, write其实都是在poll这1个函数里面完成的。具体什么意思呢?
NetworkClient的send()函数,调用了selector.send(Send send), 但这个时候数据并没有真的发送出去,只是暂存在了selector内部相对应的channel里面。下面看代码:
//Selector
public void send(Send send) {
KafkaChannel channel = channelOrFail(send.destination()); //找到数据包相对应的connection
try {
channel.setSend(send); //暂存在这个connection(channel)里面
} catch (CancelledKeyException e) {
this.failedSends.add(send.destination());
close(channel);
}
}
//KafkaChannel
public void setSend(Send send) {
if (this.send != null) //关键点:当前的没有发出去之前,不能暂存下1个!!!关于这个,后面还要详细分析
throw new IllegalStateException("Attempt to begin a send operation with prior send operation still in progress.");
this.send = send; //暂存这个数据包
this.transportLayer.addInterestOps(SelectionKey.OP_WRITE);
}
public class KafkaChannel {
private final String id;
private final TransportLayer transportLayer;
private final Authenticator authenticator;
private final int maxReceiveSize;
private NetworkReceive receive;
private Send send; //关键点:1个channel一次只能存放1个数据包,在当前的send数据包没有完整发出去之前,不能存放下一个
...
}
暂存在channel中之后,poll函数进行处理,我们抽象出一个输入-输出模型如下:
输入:暂存的send数据包
输出:完成的sends, 完成的receive(针对上1次的send), 建立的连接, 断掉的连接。
@Override
public void poll(long timeout) throws IOException {
if (timeout < 0)
throw new IllegalArgumentException("timeout should be >= 0");
clear(); //关键点:每次poll之前,会清空“输出”
if (hasStagedReceives())
timeout = 0;
/* check ready keys */
long startSelect = time.nanoseconds();
int readyKeys = select(timeout);
long endSelect = time.nanoseconds();
currentTimeNanos = endSelect;
this.sensors.selectTime.record(endSelect - startSelect, time.milliseconds());
if (readyKeys > 0) {
Set keys = this.nioSelector.selectedKeys();
Iterator iter = keys.iterator();
while (iter.hasNext()) {
SelectionKey key = iter.next();
iter.remove();
KafkaChannel channel = channel(key);
// register all per-connection metrics at once
sensors.maybeRegisterConnectionMetrics(channel.id());
lruConnections.put(channel.id(), currentTimeNanos);
try {
/* complete any connections that have finished their handshake */
if (key.isConnectable()) {
channel.finishConnect(); //把建立的连接,加入输出结果集合
this.connected.add(channel.id());
this.sensors.connectionCreated.record();
}
...
if (channel.ready() && key.isReadable() && !hasStagedReceive(channel)) {
NetworkReceive networkReceive;
while ((networkReceive = channel.read()) != null)
addToStagedReceives(channel, networkReceive);
}
if (channel.ready() && key.isWritable()) {
Send send = channel.write();
if (send != null) {
this.completedSends.add(send); //把完成的发送,加入输出结果集合
this.sensors.recordBytesSent(channel.id(), send.size());
}
}
if (!key.isValid()) {
close(channel);
this.disconnected.add(channel.id()); //把断掉的连接,加入输出结果集合
}
} catch (Exception e) {
String desc = channel.socketDescription();
if (e instanceof IOException)
log.debug("Connection with {} disconnected", desc, e);
else
log.warn("Unexpected error from {}; closing connection", desc, e);
close(channel);
this.disconnected.add(channel.id()); //把断掉的连接,加入输出结果集合
}
}
}
addToCompletedReceives(); //把完成的接收,加入输出结果集合
long endIo = time.nanoseconds();
this.sensors.ioTime.record(endIo - endSelect, time.milliseconds());
maybeCloseOldestConnection();
}
核心原理之1 – 消息的分包
在上面的代码中,为什么会有addToStagedReceives? 什么叫做staged receives呢? 这叫要从数据的分包说起:
在NetworkClient中,往下传的是一个完整的ClientRequest,进到Selector,暂存到channel中的,也是一个完整的Send对象(1个数据包)。但这个Send对象,交由底层的channel.write(Bytebuffer b)的时候,并不一定一次可以完全发送,可能要调用多次write,才能把一个Send对象完全发出去。这是因为write是非阻塞的,不是等到完全发出去,才会返回。所以才有上面的代码:
if (channel.ready() && key.isWritable()) {
Send send = channel.write(); //send不为空,表示完全发送出去,返回发出去的这个Send对象。如果没完全发出去,返回null
if (send != null) {
this.completedSends.add(send);
this.sensors.recordBytesSent(channel.id(), send.size());
}
}
同样,在接收的时候,channel.read(Bytebuffer b),一个response也可能要read多次,才能完全接收。所以就有了上面的while循环代码:
if (channel.ready() && key.isReadable() && !hasStagedReceive(channel)) {
NetworkReceive networkReceive;
while ((networkReceive = channel.read()) != null) //循环接收,直到1个response完全接收到,才会从while循环退出
addToStagedReceives(channel, networkReceive);
}
核心原理之2 – 消息的分界
从上面知道,底层数据的通信,是在每一个channel上面,2个源源不断的byte流,一个send流,一个receive流。
send的时候,还好说,发送之前知道一个完整的消息的大小;
那接收的时候,我怎么知道一个msg response什么时候结束,然后开始接收下一个response呢?
这就需要一个小技巧:在所有request,response头部,首先是一个定长的,4字节的头,receive的时候,至少调用2次read,先读取这4个字节,获取整个response的长度,接下来再读取消息体。
public class NetworkReceive implements Receive {
private final String source;
private final ByteBuffer size; //头部4字节的buffer
private final int maxSize;
private ByteBuffer buffer; //后面整个消息response的buffer
public NetworkReceive(String source) {
this.source = source;
this.size = ByteBuffer.allocate(4); //先分配4字节的头部
this.buffer = null;
this.maxSize = UNLIMITED;
}
}
核心原理之3 - 消息时序保证
在InFlightRequests中,存放了所有发出去,但是response还没有回来的request。request发出去的时候,入对;response回来,就把相对应的request出对。
final class InFlightRequests {
private final int maxInFlightRequestsPerConnection;
private final Map> requests = new HashMap>();
}
这个有个关键点:我们注意到request与response的配对,在这里是用队列表达的,而不是Map。用队列的入队,出队,完成2者的匹配。要实现这个,服务器就必须要保证消息的时序:即在一个socket上面,假如发出去的reqeust是0, 1, 2,那返回的response的顺序也必须是0, 1, 2。
但是服务器是1 + N + M模型,所有的请求进入一个requestQueue,然后是多线程并行处理的。那它如何保证消息的时序呢?
答案是mute/unmute机制:每当一个channel上面接收到一个request,这个channel就会被mute,然后等response返回之后,才会再unmute。这样就保证了同1个连接上面,同时只会有1个请求被处理。
下面是服务端的代码:
selector.completedReceives.asScala.foreach { receive =>
try {
val channel = selector.channel(receive.source)
val session = RequestChannel.Session(new KafkaPrincipal(KafkaPrincipal.USER_TYPE, channel.principal.getName),
channel.socketAddress)
val req = RequestChannel.Request(processor = id, connectionId = receive.source, session = session, buffer = receive.payload, startTimeMs = time.milliseconds, securityProtocol = protocol)
requestChannel.sendRequest(req)
} catch {
case e @ (_: InvalidRequestException | _: SchemaException) =>
// note that even though we got an exception, we can assume that receive.source is valid. Issues with constructing a valid receive object were handled earlier
error("Closing socket for " + receive.source + " because of error", e)
close(selector, receive.source)
}
selector.mute(receive.source) //收到请求,把这个请求对应的channel, mute
}
selector.completedSends.asScala.foreach { send =>
val resp = inflightResponses.remove(send.destination).getOrElse {
throw new IllegalStateException(s"Send for ${send.destination} completed, but not in `inflightResponses`")
}
resp.request.updateRequestMetrics()
selector.unmute(send.destination) //发送response之后,把这个responese对应的channel, unmute
}
NetworkClient实现思路
上面已经讲到:
(1)Selector维护了所有连接的连接池,所有连接上,消息的发送、接收都是通过poll函数进行的
(2)一个channel一次只能暂存1个Send对象。
但如果这个Send对象,一次poll之后,没有完全发送出去怎么办呢?看上层NetworkClient怎么处理的:
关键的client.ready函数
先从Sender的run()函数看起:
public void run(long now) {
Cluster cluster = metadata.fetch();
// get the list of partitions with data ready to send
RecordAccumulator.ReadyCheckResult result = this.accumulator.ready(cluster, now);
if (result.unknownLeadersExist)
this.metadata.requestUpdate();
// remove any nodes we aren't ready to send to
Iterator iter = result.readyNodes.iterator();
long notReadyTimeout = Long.MAX_VALUE;
while (iter.hasNext()) {
Node node = iter.next();
if (!this.client.ready(node, now)) { //关键函数!!!
iter.remove();
notReadyTimeout = Math.min(notReadyTimeout, this.client.connectionDelay(node, now));
}
}
// create produce requests
Map> batches = this.accumulator.drain(cluster,
result.readyNodes,
this.maxRequestSize,
now);
List expiredBatches = this.accumulator.abortExpiredBatches(this.requestTimeout, cluster, now);
// update sensors
for (RecordBatch expiredBatch : expiredBatches)
this.sensors.recordErrors(expiredBatch.topicPartition.topic(), expiredBatch.recordCount);
sensors.updateProduceRequestMetrics(batches);
List requests = createProduceRequests(batches, now);
long pollTimeout = Math.min(result.nextReadyCheckDelayMs, notReadyTimeout);
if (result.readyNodes.size() > 0) {
log.trace("Nodes with data ready to send: {}", result.readyNodes);
log.trace("Created {} produce requests: {}", requests.size(), requests);
pollTimeout = 0;
}
for (ClientRequest request : requests) //每个request分属于不同的Node
client.send(request, now); //client的send就是直接调用了selector.send,消息暂存在channel里面,没有发送
this.client.poll(pollTimeout, now); //调用selector.poll,处理连接、发送、接收
}
在上面的代码中,有一个关键函数:client.ready(Node n, ..), 这个函数内部会判断这个node有没有ready,如果没有ready,就会从readNodes里面移除,接下来就不会往这个Node发送消息。
那什么叫ready呢? 我们看一下代码:
public boolean ready(Node node, long now) {
if (isReady(node, now))
return true;
if (connectionStates.canConnect(node.idString(), now))
initiateConnect(node, now);
return false;
}
public boolean isReady(Node node, long now) {
return !metadataUpdater.isUpdateDue(now) && canSendRequest(node.idString());
}
private boolean canSendRequest(String node) {
return connectionStates.isConnected(node) && selector.isChannelReady(node) && inFlightRequests.canSendMore(node);
}
public boolean canSendMore(String node) {
Deque queue = requests.get(node);
return queue == null || queue.isEmpty() ||
(queue.peekFirst().request().completed() && queue.size() < this.maxInFlightRequestsPerConnection);
}
public boolean completed() {
return remaining <= 0 && !pending;
}
上面的代码封了好几层,但总结下来,一个Node ready,可以向其发送请求,需要符合以下几个条件:
- metadata正常,不需要update: !metadataUpdater.isUpdateDue(now)
- 连接正常 connectionStates.isConnected(node)
- channel是ready状态:这个对于PlaintextChannel, 一直返回true
- 当前该channel中,没有in flight request,所有请求都处理完了
- 当前该channel中,队列尾部的request已经完全发送出去, request.completed(),并且inflight request数目,没有超过设定的最大值
缺省为5,即允许在“天上飞”的request最多有5个,所谓在“天上飞”,就是发出去了,response还没有回来)
而上面的第5个条件,正是解决了上面的问题:一个channel里面的Send对象要是只发送了部分,下1次就不会处于ready状态了。
client.poll函数
下面看一下client.poll,是如何封装selector.poll的:
public List poll(long timeout, long now) {
long metadataTimeout = metadataUpdater.maybeUpdate(now);
try {
this.selector.poll(Utils.min(timeout, metadataTimeout, requestTimeoutMs));
} catch (IOException e) {
log.error("Unexpected error during I/O", e);
}
//上面说到,selector.poll函数,会把处理结果,放到一堆的状态变量里面(输出结果集),现在就是处理这堆输出结果的时候了。
long updatedNow = this.time.milliseconds();
List responses = new ArrayList<>();
handleCompletedSends(responses, updatedNow);
handleCompletedReceives(responses, updatedNow);
handleDisconnections(responses, updatedNow);
handleConnections();
handleTimedOutRequests(responses, updatedNow);
// invoke callbacks
for (ClientResponse response : responses) {
if (response.request().hasCallback()) {
try {
response.request().callback().onComplete(response);
} catch (Exception e) {
log.error("Uncaught error in request completion:", e);
}
}
}
return responses;
}
//Selector中的那堆状态变量,在每次poll之前,被clear情况掉,每次poll之后,填充。
//然后在client.poll里面,这堆输出结果被处理
public class Selector implements Selectable {
。。。
private final List completedSends;
private final List completedReceives;
private final Map> stagedReceives;
private final List disconnected;
private final List connected;
。。。
}
连接检测 & 自动重连机制
在所有tcp长链接的编程中,都有一个基本问题要解决:如何判断1个连接是否断开?客户端需要维护所有连接的状态(connecting, connected, disconnected),然后根据连接状态做不同逻辑。
但在NIO中,并没有一个函数,可以直接告诉你一个连接是否断开了;在NetworkClient里面,也并没有开一个线程,不断发送心跳消息,来检测连接。那它是如何处理的呢?
检测连接断开的手段
在networkClient的实现中,用了3种手段,来判断一个连接是否断开:
手段1:所有的IO函数,connect, finishConnect, read, write都会抛IOException,因此任何时候,调用这些函数的时候,只要抛异常,就认为连接已经断开。
手段2:selectionKey.isValid()
手段3:inflightRequests,所有发出去的request,都设置有一个response返回的时间。在这个时间内,response没有回来,就认为连接断了。
前2种手段,都集中在Select.poll函数里面:
public void poll(long timeout) throws IOException {
if (timeout < 0)
throw new IllegalArgumentException("timeout should be >= 0");
clear();
if (hasStagedReceives())
timeout = 0;
/* check ready keys */
long startSelect = time.nanoseconds();
int readyKeys = select(timeout);
long endSelect = time.nanoseconds();
currentTimeNanos = endSelect;
this.sensors.selectTime.record(endSelect - startSelect, time.milliseconds());
if (readyKeys > 0) {
Set keys = this.nioSelector.selectedKeys();
Iterator iter = keys.iterator();
while (iter.hasNext()) {
SelectionKey key = iter.next();
iter.remove();
KafkaChannel channel = channel(key);
// register all per-connection metrics at once
sensors.maybeRegisterConnectionMetrics(channel.id());
lruConnections.put(channel.id(), currentTimeNanos);
try {
/* complete any connections that have finished their handshake */
if (key.isConnectable()) {
channel.finishConnect();
this.connected.add(channel.id());
this.sensors.connectionCreated.record();
}
/* if channel is not ready finish prepare */
if (channel.isConnected() && !channel.ready())
channel.prepare();
/* if channel is ready read from any connections that have readable data */
if (channel.ready() && key.isReadable() && !hasStagedReceive(channel)) {
NetworkReceive networkReceive;
while ((networkReceive = channel.read()) != null)
addToStagedReceives(channel, networkReceive);
}
/* if channel is ready write to any sockets that have space in their buffer and for which we have data */
if (channel.ready() && key.isWritable()) {
Send send = channel.write();
if (send != null) {
this.completedSends.add(send);
this.sensors.recordBytesSent(channel.id(), send.size());
}
}
if (!key.isValid()) { //手段2
close(channel);
this.disconnected.add(channel.id());
}
} catch (Exception e) { //手段1:任何一个io函数,只要抛错,就认为连接断了
String desc = channel.socketDescription();
if (e instanceof IOException)
log.debug("Connection with {} disconnected", desc, e);
else
log.warn("Unexpected error from {}; closing connection", desc, e);
close(channel);
this.disconnected.add(channel.id());
}
}
}
addToCompletedReceives();
long endIo = time.nanoseconds();
this.sensors.ioTime.record(endIo - endSelect, time.milliseconds());
maybeCloseOldestConnection();
}
第3种手段,在NetworkClient里面:
public List poll(long timeout, long now) {
long metadataTimeout = metadataUpdater.maybeUpdate(now);
try {
this.selector.poll(Utils.min(timeout, metadataTimeout, requestTimeoutMs));
} catch (IOException e) {
log.error("Unexpected error during I/O", e);
}
long updatedNow = this.time.milliseconds();
List responses = new ArrayList<>();
handleCompletedSends(responses, updatedNow);
handleCompletedReceives(responses, updatedNow);
handleDisconnections(responses, updatedNow);
handleConnections();
handleTimedOutRequests(responses, updatedNow); //手段3:处理所有TimeOutRequests
for (ClientResponse response : responses) {
if (response.request().hasCallback()) {
try {
response.request().callback().onComplete(response);
} catch (Exception e) {
log.error("Uncaught error in request completion:", e);
}
}
}
return responses;
}
private void processDisconnection(List responses, String nodeId, long now) {
connectionStates.disconnected(nodeId, now);
for (ClientRequest request : this.inFlightRequests.clearAll(nodeId)) {
log.trace("Cancelled request {} due to node {} being disconnected", request, nodeId);
if (!metadataUpdater.maybeHandleDisconnection(request)) //把MetaDataRequest排除在外,其它所有请求,只要超时,就认为连接断开
responses.add(new ClientResponse(request, now, true, null));
}
}
除了上述的2个地方,还要一个地方,就是初始化的时候
private void initiateConnect(Node node, long now) {
String nodeConnectionId = node.idString();
try {
log.debug("Initiating connection to node {} at {}:{}.", node.id(), node.host(), node.port());
this.connectionStates.connecting(nodeConnectionId, now);
selector.connect(nodeConnectionId,
new InetSocketAddress(node.host(), node.port()),
this.socketSendBuffer,
this.socketReceiveBuffer);
} catch (IOException e) { //检测到连接断开
connectionStates.disconnected(nodeConnectionId, now);
metadataUpdater.requestUpdate();
log.debug("Error connecting to node {} at {}:{}:", node.id(), node.host(), node.port(), e);
}
}
检测时机
从上面代码我们可以看出,连接的检测时机,有2个:
一个是初始建立连接的时候,一个就是每次poll循环,每poll一次,就收集到一个断开的连接集合。
下面分别是Selector和NetworkClient中,关于连接状态的数据结构:
//Selector中的连接状态
public class Selector implements Selectable {
private final List disconnected;
private final List connected;
..
}
//NetworkClient中的连接状态维护
public class NetworkClient implements KafkaClient {
private final ClusterConnectionStates connectionStates;
...
}
final class ClusterConnectionStates {
private final long reconnectBackoffMs; //重连的时间间隔
private final Map nodeState;
}
private static class NodeConnectionState {
ConnectionState state;
long lastConnectAttemptMs; //上1次发起重连的时间
...
}
public enum ConnectionState {
DISCONNECTED, CONNECTING, CONNECTED
}
总结:
- Selector中的连接状态,在每次poll之前,会调用clear清空;在poll之后,收集。
- Selector中的连接状态,会传给上层NetworkClient,用于它更新自己的连接状态
- 出了来自Selctor,NetworkClient自己内部的inflightRequests,也就是上面的手段3, 也用于检测连接状态。
通过上面的机制,就保证了NetworkClient可以实时准确维护所有connection的状态。
自动重连 - ready函数
状态知道了,那剩下的就是自动重连了。这个发生在更上层的Send的run函数里面:
//Sender
public void run(long now) {
Cluster cluster = metadata.fetch();
RecordAccumulator.ReadyCheckResult result = this.accumulator.ready(cluster, now);
if (result.unknownLeadersExist)
this.metadata.requestUpdate();
Iterator iter = result.readyNodes.iterator();
long notReadyTimeout = Long.MAX_VALUE;
while (iter.hasNext()) {
Node node = iter.next();
if (!this.client.ready(node, now)) { //关键的ready函数
iter.remove();
notReadyTimeout = Math.min(notReadyTimeout, this.client.connectionDelay(node, now));
}
}
public boolean ready(Node node, long now) {
if (isReady(node, now))
return true;
if (connectionStates.canConnect(node.idString(), now))
initiateConnect(node, now); //发起重连
return false;
}
public boolean canConnect(String id, long now) {
NodeConnectionState state = nodeState.get(id);
if (state == null)
return true;
else
return state.state == ConnectionState.DISCONNECTED && now - state.lastConnectAttemptMs >= this.reconnectBackoffMs;
}
从上面函数可以看出,每次Send发数据之前,会先调用client.ready(node)判断该node的连接是否可用。
在ready内部,如果连接不是connected状态,会再判断是否可以发起自动重连,检测条件有2个:
条件1: 它不能是connecting状态,必须是disconnected
条件2: 重连不能太频繁。当前时间距离上1次重连时间,要有一定的间隔。如果broker挂了,你太频繁的重连也不起作用。
这里有个关键点:因为都是非阻塞调用,本次虽然检测到连接断了,但只是发起连接,不会等到连接建立好了,再执行下面的代码。
会在poll之后,判断连接是否建立;在下1次或者下几次poll之前,可能连接才会建立好,ready才会返回true.
欢迎加入QQ群:104286694