- 一个简单的故事介绍极大似然估计
极大似然估计(MaximumLikelihoodEstimation,MLE)是一种在统计中用于估计参数的方法,其核心思想是找到使观测数据出现的概率最大的参数值。故事背景假设我们有一个不均匀的六面色子,但我们不知道每一面出现的真实概率。传统上,一个均匀的六面色子每一面出现的概率应该是1/6,但这个色子因为某些原因(比如制造上的误差)导致各面出现的概率不同。我们的任务是,通过投掷这个色子多次,来估计
- 机器学习3——参数估计之极大似然估计
平和男人杨争争
山东大学机器学习期末复习机器学习人工智能算法
参数估计问题背景:P(ωi∣x)=p(x∣ωi)P(ωi)p(x)p(x)=∑j=1cp(x∣ωj)P(ωj)\begin{aligned}&P\left(\omega_i\mid\mathbf{x}\right)=\frac{p\left(\mathbf{x}\mid\omega_i\right)P\left(\omega_i\right)}{p(\mathbf{x})}\\&p(\mathbf
- EM求解的高斯混合模型——Q函数的极大似然估计(九)
phoenix@Capricornus
概率论机器学习人工智能
先导:EM求解的混合密度模型——Q函数p(x∣θk)→N(x∣μk,Σk)p(\boldsymbol{x}\mid\boldsymbol{\theta}_k)\rightarrow{N}(\boldsymbol{x}\mid\boldsymbol{\mu_k},\boldsymbol{\Sigma}_k)p(x∣θk)→N(x∣μk,Σk)由上述推导即可获得高斯混合模型的EM算法:在每步迭代中,先
- Task 01 第一章习题
1.1说明伯努利模型的极大似然估计以及贝叶斯估计中的统计学习方法三要素。伯努利模型是定义在取值为0与1的随机变量上的概率分布。假设观测到伯努利模型n次独立的数据生成结果,其中k次的结果为1,这时可以用极大似然估计或贝叶斯估计来估计结果为1的概率。回忆知识点:统计学习方法三要素为:模型+策略+算法模型:在监督学习过程中,模型就是所要学习的条件概率分布或决策函数。策略:统计学习要考虑按照什么样的准则选
- 第1章: 伯努利模型的极大似然估计与贝叶斯估计
Dawn³
python
伯努利模型的极大似然估计与贝叶斯估计importnumpyasnpimportmatplotlib.pyplotaspltfromscipy.statsimportbeta,bernoullifromscipy.optimizeimportminimize_scalar#设置中文字体plt.rcParams['font.sans-serif']=['SimHei']#使用黑体plt.rcParam
- 逻辑回归中的损失函数:交叉熵损失详解与推导
AI天才研究院
ChatGPT计算AI大模型应用入门实战与进阶逻辑回归算法机器学习ai
逻辑回归中的损失函数:交叉熵损失详解与推导关键词:逻辑回归、交叉熵损失、损失函数、二分类、多分类、极大似然估计、梯度下降摘要:本文深入解析逻辑回归中核心的交叉熵损失函数,从信息论基础出发,逐步推导二分类与多分类场景下的损失函数形式,结合极大似然估计揭示其理论本质。通过Python代码实现损失函数计算与梯度推导,辅以实战案例演示完整训练流程。同时对比均方误差等其他损失函数,阐释交叉熵在分类问题中的独
- 极大似然估计例题——均匀分布的极大似然估计
phoenix@Capricornus
PR书稿概率论线性代数机器学习
设总体XXX服从均匀分布U(a,b)U(a,b)U(a,b),其中aaa和bbb是未知参数,取样本观测值为x1,x2,⋯ ,xnx_1,x_2,\cdots,x_nx1,x2,⋯,xn。求参数aaa和bbb的最大似然估计。解总体XXX的概率密度函数为f(x;a,b)={1b−a,a≤x≤b,0,其他.f(x;a,b)=\begin{cases}\frac{1}{b-a},&a\leqx\leqb,
- 【课堂笔记】EM算法
zyq~
机器学习算法笔记机器学习EM算法GMM概率论人工智能
文章目录背景极大似然估计隐变量高斯混合模型EM算法合理性分析相关好文章背景 EM算法(期望最大化算法,Expectation-MaximizationAlgorithm)是一种迭代优化算法,用于在含有隐变量的概率模型中估计最大似然参数。 这是概括性的定义,下面我会解释其中的名词并用具体例子来引入EM算法。极大似然估计 先复习一下极大似然函数估计,我们假设数据满足某个分布(例如正态分布N(μ,
- 极大似然估计
phoenix@Capricornus
模式识别中的数学问题机器学习算法概率论
最大似然估计法最大似然估计又称极大似然估计,是一种利用给定样本观测值来评估模型参数的方法,其基本原理为:利用已知的样本结果信息,反推最具有可能(最大概率)导致这些样本结果出现的模型参数值。分两种情况介绍最大似然估计的方法和步骤。离散型总体设离散型总体X的分布律为P(X=x)=p(x;θ),P(X=x)=p(x;\theta),P(X=x)=p(x;θ),其中θ∈Θ\theta\in\Thetaθ∈
- 极大似然估计与机器学习
xsddys
机器学习人工智能
复习概统的时候突然发现好像极大似然估计MLE与机器学习的数据驱动非常相似,都是采样样本然后估计模型参数。貌似,后知后觉的才意识到极大似然估计就是机器学习有效的数学保证下面以拟合线性分布的最小二乘与分类问题为例推到以下如何从似然函数推导出MSE损失与交叉熵损失一、线性回归的最小二乘法1.概率模型设定假设数据由线性模型生成,且观测噪声服从正态分布:y=wTx+ϵ,ϵ∼N(0,σ2)y=\mathbf{
- Level3 — PART 4 机器学习算法 — 朴素贝叶斯
ErbaoLiu
数据分析&大模型自然语言处理&大模型机器学习&大模型机器学习人工智能朴素贝叶斯NaiveBayes
目录贝叶斯定理朴素贝叶斯模型(NaiveBayesModel)估计离散估计极大似然估计案例朴素贝叶斯扩展高斯贝叶斯分类器原理应用源码分析伯努利贝叶斯分类器原理源码分析多项朴素贝叶斯分类器半朴素贝叶斯分类器模拟题CDALEVELIII模拟题(一)CDALEVELIII模拟题(二)贝叶斯定理贝叶斯定理由英国数学家贝叶斯(ThomasBayes1702-1761)发展,用来描述两个条件概率之间的关系,比
- VAE的学习及先验知识
butterfly won't love flowers
图像生成机器学习人工智能
笔记1、先验、后验、似然、证据2、极大似然估计3、最大后验估计4、贝叶斯均值估计5、KL散度6、VAE1、先验、后验、似然、证据对于给定的数据,我们假设其是服从某个数据分布的。θθθ决定了数据的分布,而数据是从这个分布中采样得到的。但是在统计学习中,我们通常不知道真实的参数θθθ,因此转向通过数据来推断它,也就是后面要说的参数估计。在此之前先讲些基础的术语。先验P(θθθ):先验就是在看到数据之前
- 机器学习(2)——逻辑回归
追逐☞
机器学习机器学习逻辑回归人工智能
文章目录1.什么是逻辑回归?2.核心思想3.逻辑回归模型的训练:4.参数估计(损失函数与优化)4.1.**损失函数:**4.2.极大似然估计(MLE)4.3.优化方法5.决策边界6.模型评估指标7.假设与适用条件8.逻辑回归的优缺点:9.逻辑回归的常用应用:10.示例代码1.什么是逻辑回归?逻辑回归(LogisticRegression)是一种用于分类问题的统计方法,特别是用于二分类问题。尽管其名
- 最小二乘法多元线性回归_数学基础2:线性回归&最小二乘法
喂书长大的孩子
最小二乘法多元线性回归
主要介绍了最小二乘法的相关内容,包括最小二乘法的矩阵表达和推导,从概率视角来观察最小二乘法(加入高斯噪声的最小二乘估计),正则化(包括一阶正则:lasso,二阶正则ridge也就是岭回归等内容),最后介绍了从贝叶斯视角来看岭回归的思路和结论。最小二乘法的矩阵表达形式概率视角看线性回归加入高斯噪声进行极大似然估计,可以发现,当噪声服从高斯分布的时候,最小二乘法与线性回归的极大似然估计的结论是等价的。
- 【面经&八股】搜广推方向:面试记录(十三)
秋冬无暖阳°
搜广推等—算法面经面试职场和发展
【面经&八股】搜广推方向:面试记录(十三)文章目录【面经&八股】搜广推方向:面试记录(十三)1.自我介绍2.实习经历问答3.八股之类的问题4.编程题5.反问6.可以1.自我介绍。。。。。。2.实习经历问答挑最熟的一个跟他讲就好了。一定要熟~3.八股之类的问题极大似然估计和贝叶斯估计,区别与联系建议参考这个链接transformer为什么要使用多头关键点在于集成,使语义更加完善圆上随机去三个点,三个
- 似然函数与极大似然估计
Shockang
机器学习数学通关指南机器学习人工智能数学概率论
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》正文1.似然函数:直观理解与数学定义核心概念似然函数是机器学习中参数估计的基石,它从数据与模型之间的关系出发,提供了一种优化参数的数学框架。直观理解:假设你正在调整相机参数以拍摄最清晰的照片。似然函数就像是一个"清晰度指标",告诉
- AI学习专题(一)LLM技术路线
王钧石的技术博客
大模型人工智能学习ai
阶段1:AI及大模型基础(1-2个月)数学基础线性代数(矩阵、特征值分解、SVD)概率论与统计(贝叶斯定理、极大似然估计)最优化方法(梯度下降、拉格朗日乘子法)编程&框架Python(NumPy、Pandas、Matplotlib)PyTorch&TensorFlow基础HuggingFaceTransformers入门深度学习基础机器学习基础(监督/无监督学习、正则化、过拟合)反向传播、优化器(
- 【概率图与随机过程】01 一维高斯分布:极大似然与无偏性
石 溪
机器学习中的数学(全集)概率论图论自然语言处理机器学习人工智能
在这个专栏中,我们开篇首先介绍高斯分布,他的重要性体现在两点:第一:依据中心极限定理,当样本量足够大的时候,任意分布的均值都趋近于一个高斯分布,这是在整个工程领域体现出该分布的一种普适性;第二:高斯分布是后续许多模型的根本基础,例如线性高斯模型(卡尔曼滤波)、高斯过程等等。因此我们首先在这一讲当中,结合一元高斯分布,来讨论一下极大似然估计,估计的有偏性、无偏性等基本建模问题。1.极大似然估计问题背
- 统计机器学习第十三章极大似然估计的性质——图解MLE的渐进正态性
cui_hao_nan
统计机器学习导论机器学习
n=10;t=10000;s=1/12/n;x=linspace(-0.4,0.4,100);y=1/sqrt(2*pi*s)*exp(-x.^2/(2*s));z=mean(rand(t,n)-0.5,2);figure(1);clf;holdonb=20;hist(z,b);h=plot(x,y*t/b*(max(z)-min(z)),'r-');这段代码的功能是生成随机数并进行直方图和曲线的
- Logistic 回归
零 度°
机器学习回归数据挖掘人工智能
文章目录1.引言2.Logistic回归概述2.1定义与应用场景2.2与线性回归的区别3.原理与数学基础3.1Sigmoid函数3.2概率解释3.3极大似然估计4.模型建立4.1假设函数4.2成本函数4.3梯度下降法5.正则化5.1正则化的目的与类型5.1.1正则化的目的5.1.2正则化的类型5.2L1和L2正则化5.2.1L1正则化5.2.2L2正则化6.多分类问题6.1一对多(OvA)6.2一
- 2019-10-04 学习极大似然估计与优化理论
小郑的学习笔记
主要推导了一个公式推导MLE与LSE.jpeg即用极大似然估计(MLE)的角度去解多元线性回归其结果与最小二乘(LSE)解的结果是一样的,这一点我觉得很神奇。可以看这个解释例子https://www.cnblogs.com/little-YTMM/p/5700226.html2。学习数值分析,学习了两种优化,无约束最优化和有约束最优化。无约束最优化主要有梯度下降法牛顿法梯度下降法在接近极值的时候会
- 【北邮鲁鹏老师计算机视觉课程笔记】04 fitting 拟合
量子-Alex
CV知识学习和论文阅读计算机视觉笔记人工智能
【北邮鲁鹏老师计算机视觉课程笔记】04fitting拟合1拟合的任务如何从边缘找出真正的线?存在问题①噪声②外点、离群点③缺失数据2最小二乘存在的问题3全最小二乘度量的是点到直线的距离而不是点在y方向到直线的距离提示:点到直线的距离公式归一化后保留分子4极大似然估计5鲁棒的最小二乘不直接用点到直线的距离σ\sigmaσ来控制点到直线距离的影响,太远的点就是噪声点,就不考虑了。r=10的时候,也认为
- 机器学习---学习与推断,近似推断、话题模型
三月七꧁ ꧂
机器学习机器学习学习人工智能
1.学习与推断基于概率图模型定义的分布,能对目标变量的边际分布(marginaldistribution)或某些可观测变量为条件的条件分布进行推断。对概率图模型,还需确定具体分布的参数,称为参数估计或学习问题,通常使用极大似然估计或后验概率估计求解。单若将参数视为待推测的变量,则参数估计过程和推断十分相似,可以“吸收”到推断问题中。假设图模型所对应的变量集x={x1,x2,···,xn}能分为XE
- 如何通过极大似然估计 MLE Maximum Likelihood Estimation 获得 交叉熵 Cross Entropy 以及 均方损失函数 Mean Square Loss ?
shimly123456
StanfordCS229个人开发
似然函数定义以及极大似然估计MLE(完成)---------------------------------------------------------------------------------------start注意:P(A|B)并不总是等于P(B|A),原因如下:首先要明白一个事情,什么是似然函数?以下是CHATGPTMathSolver的回答:我自己解释一下,意思就是:观察到一组
- 最大期望算法(EM算法)
陇院第一Sweet Baby
算法数据结构c语言
#include//最大期望算法(EM算法)//EM算法是一种启发式的迭代算法,用于实现用样本对含有隐变量的模型的参数做极大似然估计。//EM算法通过迭代逼近的方式用实际的值带入求解模型内部参数intmain(){intm,n,r;scanf("%d%d",&m,&n);printf("%d和%d的最大公因子是\n",m,n);while(n!=0){r=m%n;m=n;n=r;}printf("
- 2018-07-03
lanjly
[TOC]极大似然估计的一般思想极大似然估计(MaximumLikelihood),顾名思义,就是根据似然度(也就是可能性,likelihood)对感兴趣的参数(如正态分布的\mu与\sigma,指数分布的\lambda)进行估计。极大似然估计的原理是一种非常直观的思想,那就是谁的可能性大,谁的脸面就大。从一个非常简单的例子来看一下极大似然估计的思想:有A、B两个箱子:A箱子有99个白球,1个黑球
- 十分钟学习极大自然似估计
培根炒蛋
EndlessLethe原创文章,转载请注明:转载自小楼吹彻玉笙寒原文链接地址:十分钟学习极大似然估计前言参数估计是机器学习里面的一个重要主题,而极大似然估计是最传统、使用最广泛的估计方法之一。本文主要介绍了极大似然估计,简单说明了其和矩估计、贝叶斯估计的异同,其他估计(如MAP)并不涉及。为什么要用极大似然估计对于一系列观察数据,我们常常可以找到一个具体分布来描述,但不清楚分布的参数。这时候我们
- 极大似然概率
zidea
MachineLearninginMarketingEM算法极大似然函数极大似然估计是机器学习中比较重要的概念,一些专业教程往往容易忽略对其解释。在开始介绍前,我们需要先理解一下似然,似然也就是像这样的意义,也就是想这样(你看到的或是观察到的结果或数据)的可能性。例如身高175cm,体重60kg根据数据。我们来估计他是男生概率。极大似然估计是一种统计学的方法,我们用已知的样本数据分布去推测具体的分
- 4 朴素贝叶斯
奋斗的喵儿
1定义朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法2.算法及实例极大似然估计:在这里插入图片描述在这里插入图片描述在这里插入图片描述贝叶斯估计:在这里插入图片描述在这里插入图片描述总结:朴素贝叶斯法是典型的生成学习方法。生成方法由训练数据学习联合概率分布P(X,Y),然后求后验概率分布P(Y|X)。即利用训练数据学习P(X|Y)和P(Y)的估计,得到联合概率分布在这里插入图片描述朴素贝
- 机器学习算法之EM算法
浅白Coder
机器学习算法机器学习人工智能
一、EM算法EM算法最初是为了解决缺失数据情况下参数估计问题;根据已经给出的观察数据,估计出模型参数的值,然后根据得到的模型参数去估计缺失的数据,再由模型的观察数据和估计的确实数据去预测模型参数值,反复迭代,直至最后收敛。1.1预备知识:1.1.1.极大似然估计:根据已观察到的数据去最大化该数据出现概率,得到的参数即为所求。(已观察到的数据理应出现的概率比较大,比较合理)1.1.2.Jensen不
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不