- 推荐算法_隐语义-梯度下降
_feivirus_
算法机器学习和数学推荐算法机器学习隐语义
importnumpyasnp1.模型实现"""inputrate_matrix:M行N列的评分矩阵,值为P*Q.P:初始化用户特征矩阵M*K.Q:初始化物品特征矩阵K*N.latent_feature_cnt:隐特征的向量个数max_iteration:最大迭代次数alpha:步长lamda:正则化系数output分解之后的P和Q"""defLFM_grad_desc(rate_matrix,l
- [实践应用] 深度学习之优化器
YuanDaima2048
深度学习工具使用pytorch深度学习人工智能机器学习python优化器
文章总览:YuanDaiMa2048博客文章总览深度学习之优化器1.随机梯度下降(SGD)2.动量优化(Momentum)3.自适应梯度(Adagrad)4.自适应矩估计(Adam)5.RMSprop总结其他介绍在深度学习中,优化器用于更新模型的参数,以最小化损失函数。常见的优化函数有很多种,下面是几种主流的优化器及其特点、原理和PyTorch实现:1.随机梯度下降(SGD)原理:随机梯度下降通过
- 数学建模、运筹学之非线性规划
AgentSmart
算法学习算法动态规划线性代数线性规划
数学建模、运筹学之非线性规划一、最优化问题理论体系二、梯度下降法——无约束非线性规划三、牛顿法——无约束非线性规划四、只包含等值约束的拉格朗日乘子法五、不等值约束非线性规划与KKT条件一、最优化问题理论体系最优化问题旨在寻找全局最优值(或为最大值,或为最小值)。最优化问题一般可以分为两个部分:目标函数与约束条件。该问题的进一步细分也是根据这两部分的差异。最优化问题根据变量的取值范围不同可以划分为一
- Python实现梯度下降法
闲人编程
pythonpython开发语言梯度下降算法优化
博客:Python实现梯度下降法目录引言什么是梯度下降法?梯度下降法的应用场景梯度下降法的基本思想梯度下降法的原理梯度的定义学习率的选择损失函数与优化问题梯度下降法的收敛条件Python实现梯度下降法面向对象的设计思路代码实现示例与解释梯度下降法应用实例:线性回归场景描述算法实现结果分析与可视化梯度下降法的改进版本随机梯度下降(SGD)小批量梯度下降(Mini-batchGradientDesce
- 每天五分钟玩转深度学习PyTorch:模型参数优化器torch.optim
幻风_huanfeng
深度学习框架pytorch深度学习pytorch人工智能神经网络机器学习优化算法
本文重点在机器学习或者深度学习中,我们需要通过修改参数使得损失函数最小化(或最大化),优化算法就是一种调整模型参数更新的策略。在pytorch中定义了优化器optim,我们可以使用它调用封装好的优化算法,然后传递给它神经网络模型参数,就可以对模型进行优化。本文是学习第6步(优化器),参考链接pytorch的学习路线随机梯度下降算法在深度学习和机器学习中,梯度下降算法是最常用的参数更新方法,它的公式
- C# 图形图像技术(通过Graphics绘制图像)
萨达大
c#开发语言
文章目录创建Graphics对象画笔与画刷画笔画刷SolidBrush类HatchBrush类LinerGradientBrush类基本图形绘制矩形椭圆圆弧扇形创建Graphics对象privatevoidForm1_Load(objectsender,Eventargse){Graphicsghs=this.CreateGraphics();}画笔与画刷画笔构造函数publicPen(Color
- 梯度提升机 (Gradient Boosting Machines, GBM)
ALGORITHM LOL
boosting集成学习机器学习
梯度提升机(GradientBoostingMachines,GBM)通俗易懂算法梯度提升机(GradientBoostingMachines,GBM)是一种集成学习算法,主要用于回归和分类问题。GBM本质上是通过训练一系列简单的模型(通常是决策树),然后将这些模型组合起来,从而提高整体预测性能。基本步骤初始模型:首先,我们用一个简单的模型(如一个常数值)作为预测模型,记为F0(x)F_0(x)F
- 当背景为两种颜色交替出现时?用重复性渐变实现
痛心凉
重复性渐变cssdiv{background-image:linear-gradient(0deg,rgba(255,255,255,.2)50%,transparent50%,transparent);background-size:37px37px;background-color:#EBEBEB;//按需要改动背景色}
- Python——渐变色
星和月
python
在Python的turtle模块中,可以使用colorsys库来创建渐变色。importturtleimportcolorsysdefdraw_gradient(start_color,end_color):screen=turtle.Screen()screen.colormode(255)turtle.speed(0)turtle.penup()turtle.goto(-200,-200)tu
- 深度学习算法,该如何深入,举例说明
liyy614
深度学习
深度学习算法的深入学习可以从理论和实践两个方面进行。理论上,深入理解深度学习需要掌握数学基础(如线性代数、概率论、微积分)、机器学习基础和深度学习框架原理。实践上,可以通过实现和优化深度学习模型来提升技能。理论深入数学基础线性代数:理解向量、矩阵、特征值和特征向量等,对于理解神经网络的权重和偏置矩阵至关重要。概率论:用于理解模型的不确定性,如Dropout等正则化技术。微积分:理解梯度下降等优化算
- html字体如何设置渐变,CSS 实现文字渐变色
甄公子
html字体如何设置渐变
CSS实现文字渐变,有下面两种方法:1.background属性.text-gradient{background-image:linear-gradient(toright,orange,purple);-webkit-background-clip:text;color:transparent;font-size:30px;}文字渐变效果如下:实现原理:background-image属性为该
- Adam优化器:深度学习中的自适应方法
2401_85743969
深度学习人工智能
引言在深度学习领域,优化算法是训练神经网络的核心组件之一。Adam(AdaptiveMomentEstimation)优化器因其自适应学习率调整能力而受到广泛关注。本文将详细介绍Adam优化器的工作原理、实现机制以及与其他优化器相比的优势。深度学习优化器概述优化器在深度学习中负责调整模型的参数,以最小化损失函数。常见的优化器包括SGD(随机梯度下降)、RMSprop、AdaGrad、AdaDelt
- 《机器学习》—— XGBoost(xgb.XGBClassifier) 分类器
张小生180
机器学习人工智能
文章目录一、XGBoost分类器的介绍二、XGBoost(xgb.XGBClassifier)分类器与随机森林分类器(RandomForestClassifier)的区别三、XGBoost(xgb.XGBClassifier)分类器代码使用示例一、XGBoost分类器的介绍XGBoost分类器是一种基于梯度提升决策树(GradientBoostingDecisionTree,GBDT)的集成学习算
- 【CSS】如何写渐变色文字并且有打光效果
努力挣钱的小鑫
CSScss前端css3
效果如上,其实核心除了渐变色文字的设置background:linear-gradient(270deg,#d2a74294%,#f6e2a725%,#d5ab4a48%,#f6e2a782%,#d1a6414%);color:#e8bb2c;background-clip:text;color:transparent;还有就是打光效果,原理其实就是两块遮罩,如下完整代码自己再根据自己需求调整下就
- 如何在Java中实现高效的分布式梯度下降算法
省赚客app开发者
java分布式算法
如何在Java中实现高效的分布式梯度下降算法大家好,我是微赚淘客系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!在本文中,我们将探讨如何在Java中实现高效的分布式梯度下降算法。分布式梯度下降(DistributedGradientDescent)是一种常用于训练大规模机器学习模型的优化方法,特别是在处理大规模数据集时非常有效。本文将介绍如何设计和实现这一算法,以提高训练效率。分布式梯度
- 强化学习分类
0penuel0
Model-free:Qlearning,Sarsa,PolicyGradientsModel-based:能通过想象来预判断接下来将要发生的所有情况.然后选择这些想象情况中最好的那种基于概率:PolicyGradients基于价值:Qlearning,Sarsa两者融合:Actor-Critic回合更新:Monte-carlolearning,基础版的policygradients单步更新:Ql
- 2025秋招计算机视觉面试题(十一) - 为什么输入网络前要对图像做归一化
微凉的衣柜
计算机视觉人工智能语言模型机器学习
问题在将图像输入到深度学习网络之前,一般先对图像进行预处理,即图像归一化,为什么需要这么做呢?问题背景在面试的时候,面试官先问的问题是“机器学习中为什么要做特征归一化”,我的回答是“特征归一化可以消除特征之间量纲不同的影响,不然分析出来的结果显然会倾向于数值差别比较大的特征,另外从梯度下降的角度理解,数据归一化后,最优解的寻优过程明显会变得平缓,更容易正确的收敛到最优解”。接着面试官又问“图像的像
- 深度学习--机器学习相关(2)
在下小天n
深度学习深度学习机器学习人工智能
1.适应性矩估计适应性矩估计(AdaptiveMomentEstimation,Adam)是一种可以代替传统的梯度下降(SGD和MBGD)的优化算法。Adam算法结合了适应性梯度算法和均方根传播的优点。Momentum在学习机器学习时是很可能遇到的,是动量的意思。动量不是速度和学习率,应该说是类似于加速度。AdaGrad(适应性梯度算法)适应性梯度算法的特点在于:独立地调整每一个参数的学习率。在S
- 实现带有弧度的左右边角
kilito_01
css
像这样的圆角要怎么实现从结构上来看是用before和after来实现的对激活项进行设置一个定位对before进行一个相对定位放在左下角重点就在于这个背景css的设置进行一个圆形的渐变把圆心定在左上角这个圆形的背景就是透明的剩下的就是这个#f5f5f5的颜色就能实现这种带弧度的角background:radial-gradient(circleat00,transparent25px,#f5f5f5
- css3属性linear-gradient兼容ie9问题
曲米茶
1.在vue-cli构建的商城项目中发现background-image:linear-gradient(toright,#ff0067,#ff5698);在ie9中失效,无法显示任何内容。解决方案:IE可以依靠滤镜实现渐变。startColorstr表示起点的颜色,endColorstr表示终点颜色。GradientType表示渐变类型,0为缺省值,表示垂直渐变,1表示水平渐变。filter:p
- 机器学习系列12:反向传播算法
SuperFengCode
机器学习系列机器学习神经网络反向传播算法梯度检验机器学习笔记
当我们要运用高级算法进行梯度下降时,需要计算两个值,代价函数和代价函数的偏导数:代价函数我们之前已经知道怎么求了,现在只需要求代价函数的偏导数即可。采用如下方法,先进行前向传播算法,然后再进行反向传播算法(BackpropagationAlgorithm),反向传播算法与前向传播算法方向相反,它用来求代价函数的偏导数。具体过程看下图:用δ作为误差,计算方法为:有时我们在运用反向传播算法时会遇到bu
- 李宏毅机器学习笔记——反向传播算法
小陈phd
机器学习机器学习算法神经网络
反向传播算法反向传播(Backpropagation)是一种用于训练人工神经网络的算法,它通过计算损失函数相对于网络中每个参数的梯度来更新这些参数,从而最小化损失函数。反向传播是深度学习中最重要的算法之一,通常与梯度下降等优化算法结合使用。反向传播的基本原理反向传播的核心思想是利用链式法则(ChainRule)来高效地计算损失函数相对于每个参数的梯度。以下是反向传播的基本步骤:前向传播(Forwa
- flutter 开发中常用的 Widget
执念1012
flutterandroidiosflutterjavascript前端ios安卓
flutter开发中常用的Widget原文地址Containerwidth宽度height高度margin设置外间距padding设置内间距alignment对其方式decorationDecoration对Container进行修饰gradient渐变boxShadow阴影transform设置形变constraints设置Contianer最大、最小宽高color背景颜色child子组件注意,
- 这项来自中国的AI研究介绍了1位全量化训练(FQT):增强了全量化训练(FQT)的能力至1位
量子位AI
人工智能机器学习深度学习
全量化训练(FQT)可以通过将激活、权重和梯度转换为低精度格式来加速深度神经网络的训练。量化过程使得计算速度更快,且内存利用率更低,从而使训练过程更加高效。FQT在尽量减少数值精度的同时,保持了训练的有效性。研究人员一直在研究1位FQT的可行性,试图探索这些限制。该研究首先从理论上分析了FQT,重点关注了如Adam和随机梯度下降(SGD)等知名的优化算法。分析中出现了一个关键发现,那就是FQT收敛
- Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
winddy_akoky
1.介绍作为基于迭代优化攻击的基准测试已经成为评估防御的标准实践,新的防御出现了,似乎对这些强大的基于优化的攻击具有强大的抵抗力。Kurakin,A.,Goodfellow,I.,andBengio,S.Adversar-ialexamplesinthephysicalworld.arXivpreprintarXiv:1607.02533,2016a.Madry,A.,Makelov,A.,Sch
- 深度学习中的梯度消失和梯度爆炸问题
码上飞扬
深度学习人工智能梯度消失梯度爆炸
在深度学习领域,随着模型层数的增加,我们常常会遇到两个棘手的问题:梯度消失(VanishingGradients)和梯度爆炸(ExplodingGradients)。这两个问题严重影响了深度神经网络的训练效率和性能。本文将详细介绍这两个问题,并通过实例帮助读者更好地理解。一、梯度消失问题梯度消失是深度学习中的一大难题,尤其在训练深度神经网络时显得尤为棘手。这一问题的本质在于,当我们在训练过程中通过
- 梯度下降法
小丹丹的梦想后花园
梯度下降法,最通俗易懂的解释。数据分析挖掘与算法1月7日作者:六尺帐篷链接:https://www.jianshu.com/p/c7e642877b0e本文从一个下山场景开始,提出梯度下降算法的基本思想,接着从数学上解释梯度下降算法原理,最后实现一个简单的梯度下降算法实例!梯度下降的场景假设梯度下降法的基本思想可以类比为一个下山的过程。假设这样一个场景:一个人被困在山上,需要从山上下来(i.e.找
- 基于Python的机器学习系列(18):梯度提升分类(Gradient Boosting Classification)
会飞的Anthony
信息系统机器学习人工智能机器学习python分类
简介梯度提升(GradientBoosting)是一种集成学习方法,通过逐步添加新的预测器来改进模型。在回归问题中,我们使用梯度来最小化残差。在分类问题中,我们可以利用梯度提升来进行二分类或多分类任务。与回归不同,分类问题需要使用如softmax这样的概率模型来处理类别标签。梯度提升分类的工作原理梯度提升分类的基本步骤与回归类似,但在分类任务中,我们使用概率模型来处理预测结果:初始化模型:选择一个
- 深度学习速通系列:梯度消失vs梯度爆炸
Ven%
深度学习速通系列人工智能深度学习python
梯度消失和梯度爆炸是深度学习中训练深层神经网络时常见的两个问题,它们影响网络的训练过程和性能。梯度消失(VanishingGradientProblem)定义:梯度消失是指在深层神经网络的反向传播过程中,由于链式法则,梯度值随着层数的增加而迅速减小,最终趋近于零。原因:激活函数的导数很小,如Sigmoid或Tanh函数在输入值非常大或非常小的时候导数接近零。权重初始化不当,导致梯度在网络中的传播过
- Datawhale X 李宏毅苹果书 AI夏令营 进阶 Task2-自适应学习率+分类
沙雕是沙雕是沙雕
人工智能学习深度学习
目录1.自适应学习率1.1AdaGrad1.2RMSProp1.3Adam1.4学习率调度1.5优化策略的总结2.分类2.1分类与回归的关系2.2带有softmax的分类2.3分类损失1.自适应学习率传统的梯度下降方法在优化过程中常常面临学习率设置不当的问题。固定的学习率在训练初期可能过大,导致模型训练不稳定,而在后期可能过小,导致训练速度缓慢。为了克服这些问题,自适应学习率方法应运而生。这些方法
- 项目中 枚举与注解的结合使用
飞翔的马甲
javaenumannotation
前言:版本兼容,一直是迭代开发头疼的事,最近新版本加上了支持新题型,如果新创建一份问卷包含了新题型,那旧版本客户端就不支持,如果新创建的问卷不包含新题型,那么新旧客户端都支持。这里面我们通过给问卷类型枚举增加自定义注解的方式完成。顺便巩固下枚举与注解。
一、枚举
1.在创建枚举类的时候,该类已继承java.lang.Enum类,所以自定义枚举类无法继承别的类,但可以实现接口。
- 【Scala十七】Scala核心十一:下划线_的用法
bit1129
scala
下划线_在Scala中广泛应用,_的基本含义是作为占位符使用。_在使用时是出问题非常多的地方,本文将不断完善_的使用场景以及所表达的含义
1. 在高阶函数中使用
scala> val list = List(-3,8,7,9)
list: List[Int] = List(-3, 8, 7, 9)
scala> list.filter(_ > 7)
r
- web缓存基础:术语、http报头和缓存策略
dalan_123
Web
对于很多人来说,去访问某一个站点,若是该站点能够提供智能化的内容缓存来提高用户体验,那么最终该站点的访问者将络绎不绝。缓存或者对之前的请求临时存储,是http协议实现中最核心的内容分发策略之一。分发路径中的组件均可以缓存内容来加速后续的请求,这是受控于对该内容所声明的缓存策略。接下来将讨web内容缓存策略的基本概念,具体包括如如何选择缓存策略以保证互联网范围内的缓存能够正确处理的您的内容,并谈论下
- crontab 问题
周凡杨
linuxcrontabunix
一: 0481-079 Reached a symbol that is not expected.
背景:
*/5 * * * * /usr/IBMIHS/rsync.sh
- 让tomcat支持2级域名共享session
g21121
session
tomcat默认情况下是不支持2级域名共享session的,所有有些情况下登陆后从主域名跳转到子域名会发生链接session不相同的情况,但是只需修改几处配置就可以了。
打开tomcat下conf下context.xml文件
找到Context标签,修改为如下内容
如果你的域名是www.test.com
<Context sessionCookiePath="/path&q
- web报表工具FineReport常用函数的用法总结(数学和三角函数)
老A不折腾
Webfinereport总结
ABS
ABS(number):返回指定数字的绝对值。绝对值是指没有正负符号的数值。
Number:需要求出绝对值的任意实数。
示例:
ABS(-1.5)等于1.5。
ABS(0)等于0。
ABS(2.5)等于2.5。
ACOS
ACOS(number):返回指定数值的反余弦值。反余弦值为一个角度,返回角度以弧度形式表示。
Number:需要返回角
- linux 启动java进程 sh文件
墙头上一根草
linuxshelljar
#!/bin/bash
#初始化服务器的进程PId变量
user_pid=0;
robot_pid=0;
loadlort_pid=0;
gateway_pid=0;
#########
#检查相关服务器是否启动成功
#说明:
#使用JDK自带的JPS命令及grep命令组合,准确查找pid
#jps 加 l 参数,表示显示java的完整包路径
#使用awk,分割出pid
- 我的spring学习笔记5-如何使用ApplicationContext替换BeanFactory
aijuans
Spring 3 系列
如何使用ApplicationContext替换BeanFactory?
package onlyfun.caterpillar.device;
import org.springframework.beans.factory.BeanFactory;
import org.springframework.beans.factory.xml.XmlBeanFactory;
import
- Linux 内存使用方法详细解析
annan211
linux内存Linux内存解析
来源 http://blog.jobbole.com/45748/
我是一名程序员,那么我在这里以一个程序员的角度来讲解Linux内存的使用。
一提到内存管理,我们头脑中闪出的两个概念,就是虚拟内存,与物理内存。这两个概念主要来自于linux内核的支持。
Linux在内存管理上份为两级,一级是线性区,类似于00c73000-00c88000,对应于虚拟内存,它实际上不占用
- 数据库的单表查询常用命令及使用方法(-)
百合不是茶
oracle函数单表查询
创建数据库;
--建表
create table bloguser(username varchar2(20),userage number(10),usersex char(2));
创建bloguser表,里面有三个字段
&nbs
- 多线程基础知识
bijian1013
java多线程threadjava多线程
一.进程和线程
进程就是一个在内存中独立运行的程序,有自己的地址空间。如正在运行的写字板程序就是一个进程。
“多任务”:指操作系统能同时运行多个进程(程序)。如WINDOWS系统可以同时运行写字板程序、画图程序、WORD、Eclipse等。
线程:是进程内部单一的一个顺序控制流。
线程和进程
a. 每个进程都有独立的
- fastjson简单使用实例
bijian1013
fastjson
一.简介
阿里巴巴fastjson是一个Java语言编写的高性能功能完善的JSON库。它采用一种“假定有序快速匹配”的算法,把JSON Parse的性能提升到极致,是目前Java语言中最快的JSON库;包括“序列化”和“反序列化”两部分,它具备如下特征:  
- 【RPC框架Burlap】Spring集成Burlap
bit1129
spring
Burlap和Hessian同属于codehaus的RPC调用框架,但是Burlap已经几年不更新,所以Spring在4.0里已经将Burlap的支持置为Deprecated,所以在选择RPC框架时,不应该考虑Burlap了。
这篇文章还是记录下Burlap的用法吧,主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
 
- 【Mahout一】基于Mahout 命令参数含义
bit1129
Mahout
1. mahout seqdirectory
$ mahout seqdirectory
--input (-i) input Path to job input directory(原始文本文件).
--output (-o) output The directory pathna
- linux使用flock文件锁解决脚本重复执行问题
ronin47
linux lock 重复执行
linux的crontab命令,可以定时执行操作,最小周期是每分钟执行一次。关于crontab实现每秒执行可参考我之前的文章《linux crontab 实现每秒执行》现在有个问题,如果设定了任务每分钟执行一次,但有可能一分钟内任务并没有执行完成,这时系统会再执行任务。导致两个相同的任务在执行。
例如:
<?
//
test
.php
- java-74-数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
bylijinnan
java
public class OcuppyMoreThanHalf {
/**
* Q74 数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
* two solutions:
* 1.O(n)
* see <beauty of coding>--每次删除两个不同的数字,不改变数组的特性
* 2.O(nlogn)
* 排序。中间
- linux 系统相关命令
candiio
linux
系统参数
cat /proc/cpuinfo cpu相关参数
cat /proc/meminfo 内存相关参数
cat /proc/loadavg 负载情况
性能参数
1)top
M:按内存使用排序
P:按CPU占用排序
1:显示各CPU的使用情况
k:kill进程
o:更多排序规则
回车:刷新数据
2)ulimit
ulimit -a:显示本用户的系统限制参
- [经营与资产]保持独立性和稳定性对于软件开发的重要意义
comsci
软件开发
一个软件的架构从诞生到成熟,中间要经过很多次的修正和改造
如果在这个过程中,外界的其它行业的资本不断的介入这种软件架构的升级过程中
那么软件开发者原有的设计思想和开发路线
- 在CentOS5.5上编译OpenJDK6
Cwind
linuxOpenJDK
几番周折终于在自己的CentOS5.5上编译成功了OpenJDK6,将编译过程和遇到的问题作一简要记录,备查。
0. OpenJDK介绍
OpenJDK是Sun(现Oracle)公司发布的基于GPL许可的Java平台的实现。其优点:
1、它的核心代码与同时期Sun(-> Oracle)的产品版基本上是一样的,血统纯正,不用担心性能问题,也基本上没什么兼容性问题;(代码上最主要的差异是
- java乱码问题
dashuaifu
java乱码问题js中文乱码
swfupload上传文件参数值为中文传递到后台接收中文乱码 在js中用setPostParams({"tag" : encodeURI( document.getElementByIdx_x("filetag").value,"utf-8")});
然后在servlet中String t
- cygwin很多命令显示command not found的解决办法
dcj3sjt126com
cygwin
cygwin很多命令显示command not found的解决办法
修改cygwin.BAT文件如下
@echo off
D:
set CYGWIN=tty notitle glob
set PATH=%PATH%;d:\cygwin\bin;d:\cygwin\sbin;d:\cygwin\usr\bin;d:\cygwin\usr\sbin;d:\cygwin\us
- [介绍]从 Yii 1.1 升级
dcj3sjt126com
PHPyii2
2.0 版框架是完全重写的,在 1.1 和 2.0 两个版本之间存在相当多差异。因此从 1.1 版升级并不像小版本间的跨越那么简单,通过本指南你将会了解两个版本间主要的不同之处。
如果你之前没有用过 Yii 1.1,可以跳过本章,直接从"入门篇"开始读起。
请注意,Yii 2.0 引入了很多本章并没有涉及到的新功能。强烈建议你通读整部权威指南来了解所有新特性。这样有可能会发
- Linux SSH免登录配置总结
eksliang
ssh-keygenLinux SSH免登录认证Linux SSH互信
转载请出自出处:http://eksliang.iteye.com/blog/2187265 一、原理
我们使用ssh-keygen在ServerA上生成私钥跟公钥,将生成的公钥拷贝到远程机器ServerB上后,就可以使用ssh命令无需密码登录到另外一台机器ServerB上。
生成公钥与私钥有两种加密方式,第一种是
- 手势滑动销毁Activity
gundumw100
android
老是效仿ios,做android的真悲催!
有需求:需要手势滑动销毁一个Activity
怎么办尼?自己写?
不用~,网上先问一下百度。
结果:
http://blog.csdn.net/xiaanming/article/details/20934541
首先将你需要的Activity继承SwipeBackActivity,它会在你的布局根目录新增一层SwipeBackLay
- JavaScript变换表格边框颜色
ini
JavaScripthtmlWebhtml5css
效果查看:http://hovertree.com/texiao/js/2.htm代码如下,保存到HTML文件也可以查看效果:
<html>
<head>
<meta charset="utf-8">
<title>表格边框变换颜色代码-何问起</title>
</head>
<body&
- Kafka Rest : Confluent
kane_xie
kafkaRESTconfluent
最近拿到一个kafka rest的需求,但kafka暂时还没有提供rest api(应该是有在开发中,毕竟rest这么火),上网搜了一下,找到一个Confluent Platform,本文简单介绍一下安装。
这里插一句,给大家推荐一个九尾搜索,原名叫谷粉SOSO,不想fanqiang谷歌的可以用这个。以前在外企用谷歌用习惯了,出来之后用度娘搜技术问题,那匹配度简直感人。
环境声明:Ubu
- Calender不是单例
men4661273
单例Calender
在我们使用Calender的时候,使用过Calendar.getInstance()来获取一个日期类的对象,这种方式跟单例的获取方式一样,那么它到底是不是单例呢,如果是单例的话,一个对象修改内容之后,另外一个线程中的数据不久乱套了吗?从试验以及源码中可以得出,Calendar不是单例。
测试:
Calendar c1 =
- 线程内存和主内存之间联系
qifeifei
java thread
1, java多线程共享主内存中变量的时候,一共会经过几个阶段,
lock:将主内存中的变量锁定,为一个线程所独占。
unclock:将lock加的锁定解除,此时其它的线程可以有机会访问此变量。
read:将主内存中的变量值读到工作内存当中。
load:将read读取的值保存到工作内存中的变量副本中。
- schedule和scheduleAtFixedRate
tangqi609567707
javatimerschedule
原文地址:http://blog.csdn.net/weidan1121/article/details/527307
import java.util.Timer;import java.util.TimerTask;import java.util.Date;
/** * @author vincent */public class TimerTest {
 
- erlang 部署
wudixiaotie
erlang
1.如果在启动节点的时候报这个错 :
{"init terminating in do_boot",{'cannot load',elf_format,get_files}}
则需要在reltool.config中加入
{app, hipe, [{incl_cond, exclude}]},
2.当generate时,遇到:
ERROR