四.Hadoop的架构介绍

【Hadoop入门】Hadoop的架构介绍

https://blog.csdn.net/baiye_xing/article/details/76228522

Hadoop的概念

Apache Hadoop是一款支持数据密集型分布式应用并以Apache 2.0许可协议发布的开源软件框架。它支持在商品硬件构建的大型集群上运行的应用程序。Hadoop是根据Google公司发表的MapReduce和Google档案系统的论文自行实作而成。

Hadoop是一套开源的软件平台,利用服务器集群,根据用户的自定义业务逻辑,对海量数据进行分布式处理。诞生于2006年。

Hadoop与Google一样,都是小孩命名的,是一个虚构的名字,没有特别的含义。从计算机专业的角度看,Hadoop是一个分布式系统基础架构,由Apache基金会开发。Hadoop的主要目标是对分布式环境下的“大数据”以一种可靠、高效、可伸缩的方式处理。

Hadoop框架透明地为应用提供可靠性和数据移动。它实现了名为MapReduce的编程范式:应用程序被分割成许多小部分,而每个部分都能在集群中的任意节点上执行或重新执行。

Hadoop还提供了分布式文件系统,用以存储所有计算节点的数据,这为整个集群带来了非常高的带宽。MapReduce和分布式文件系统的设计,使得整个框架能够自动处理节点故障。它使应用程序与成千上万的独立计算的电脑和PB级的数据。

Hadoop的历史

四.Hadoop的架构介绍_第1张图片

Hadoop的特点

扩容能力(Scalable)

能可靠地(reliably)存储和处理千兆字节(PB)数据

成本低(Economical)

可以通过普通机器组成的服务器集群来分发以及处理数据。这些服务器几圈总计可以达到千个节点。

高效率(Efficient)

通过分发数据,hadoop 可以在数据所在的节点上并行的(parallel)处理它们,这使得处理非常快。

可靠性(Reliable)

hadoop 能自动地维护数据的多份副本,并且在任务失败后能自动重新部署(redeploy)计算任务

Hadoop的组成

1.Hadoop的核心组件

四.Hadoop的架构介绍_第2张图片

分析:Hadoop的核心组件分为:HDFS(分布式文件系统)、MapRuduce(分布式运算编程框架)、YARN(运算资源调度系统)

2.HDFS的文件系统

四.Hadoop的架构介绍_第3张图片

HDFS

1.定义

整个Hadoop的体系结构主要是通过HDFS(Hadoop分布式文件系统)来实现对分布式存储的底层支持,并通过MR来实现对分布式并行任务处理的程序支持。

HDFS是Hadoop体系中数据存储管理的基础。它是一个高度容错的系统,能检测和应对硬件故障,用于在低成本的通用硬件上运行。HDFS简化了文件的一致性模型,通过流式数据访问,提供高吞吐量应用程序数据访问功能,适合带有大型数据集的应用程序

2.组成

HDFS采用主从(Master/Slave)结构模型,一个HDFS集群是由一个NameNode和若干个DataNode组成的。NameNode作为主服务器,管理文件系统命名空间和客户端对文件的访问操作。DataNode管理存储的数据。HDFS支持文件形式的数据。

从内部来看,文件被分成若干个数据块,这若干个数据块存放在一组DataNode上。NameNode执行文件系统的命名空间,如打开、关闭、重命名文件或目录等,也负责数据块到具体DataNode的映射。DataNode负责处理文件系统客户端的文件读写,并在NameNode的统一调度下进行数据库的创建、删除和复制工作。NameNode是所有HDFS元数据的管理者,用户数据永远不会经过NameNode。

3.图解

四.Hadoop的架构介绍_第4张图片

分析:NameNode是管理者,DataNode是文件存储者、Client是需要获取分布式文件系统的应用程序。

MapReduce

1.定义

Hadoop MapReduce是google MapReduce 克隆版。

MapReduce是一种计算模型,用以进行大数据量的计算。其中Map对数据集上的独立元素进行指定的操作,生成键-值对形式中间结果。Reduce则对中间结果中相同“键”的所有“值”进行规约,以得到最终结果。MapReduce这样的功能划分,非常适合在大量计算机组成的分布式并行环境里进行数据处理。

2.组成

四.Hadoop的架构介绍_第5张图片

分析:

(1)JobTracker

JobTracker叫作业跟踪器,运行到主节点(Namenode)上的一个很重要的进程,是MapReduce体系的调度器。用于处理作业(用户提交的代码)的后台程序,决定有哪些文件参与作业的处理,然后把作业切割成为一个个的小task,并把它们分配到所需要的数据所在的子节点。

Hadoop的原则就是就近运行,数据和程序要在同一个物理节点里,数据在哪里,程序就跑去哪里运行。这个工作是JobTracker做的,监控task,还会重启失败的task(于不同的节点),每个集群只有唯一一个JobTracker,类似单点的NameNode,位于Master节点

(2)TaskTracker

TaskTracker叫任务跟踪器,MapReduce体系的最后一个后台进程,位于每个slave节点上,与datanode结合(代码与数据一起的原则),管理各自节点上的task(由jobtracker分配)。

每个节点只有一个tasktracker,但一个tasktracker可以启动多个JVM,运行Map Task和Reduce Task;并与JobTracker交互,汇报任务状态,

Map Task:解析每条数据记录,传递给用户编写的map()并执行,将输出结果写入本地磁盘(如果为map-only作业,直接写入HDFS)。

Reducer Task:从Map Task的执行结果中,远程读取输入数据,对数据进行排序,将数据按照分组传递给用户编写的reduce函数执行。

其他

Hive:建立在 Hadoop 上的数据仓库基础构架,提供完整的sql查询功能,可以将sql语句转换为MapReduce任务进行运行。

Hbase:HBase利用Hadoop HDFS作为其文件存储系统,利用HBase技术可在廉价PC Server上搭建起大规模结构化存储集群。

Hadoop的应用实例

Hadoop的整体架构

四.Hadoop的架构介绍_第6张图片

分析

ETL:extract-transform-load的缩写,即数据抽取、转换、装载的过程。

zookeeper:它是一个针对大型分布式系统的可靠协调系统,提供的功能包括:配置维护、名字服务、分布式同步、组服务等。

1.流量查询系统总体流程

四.Hadoop的架构介绍_第7张图片

2.流量查询系统数据预处理功能框架

四.Hadoop的架构介绍_第8张图片

你可能感兴趣的:(四.Hadoop的架构介绍)