CyclicBarrier 是如何做到等待多线程到达一起执行的?

  我们有些场景,是需要使用 多线各一起执行某些操作的,比如进行并发测试,比如进行多线程数据汇总。

  自然,我们可以使用 CountDownLatch, CyclicBarrier, 以及多个 Thread.join()。 虽然最终的效果都差不多,但实际却各有千秋。我们此处主要看 CyclicBarrier .

  

  概要: CyclicBarrier 使用 n 个 permit 进行初始化,当n个线程都到达后进行放行,然后进入下一个循环周期。在放行的同时,还可以设置一个执行方法,即相当于回调操作。

 

一、CyclicBarrier 具体实现

  主循环等待!

    // CyclicBarrier
    /**
     * Main barrier code, covering the various policies.
     */
    private int dowait(boolean timed, long nanos)
        throws InterruptedException, BrokenBarrierException,
               TimeoutException {
        // 使用一个 互斥锁,保证进行排队等待的安全性
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            // 使用的一 Generation 代表一生循环周期,当周期到达后,替换此值
            final Generation g = generation;

            // 针对异常情况,直接抛出异常,一般是用于多线程之间通信
            if (g.broken)
                throw new BrokenBarrierException();

            if (Thread.interrupted()) {
                // breakBarrier 是针对其他线程的,而 抛出的 InterruptedException 是针对当前线程的
                // 从而达到中断标志全局可见的效果
                breakBarrier();
                throw new InterruptedException();
            }

            // 以下逻辑为进入了等待区域, count-1, 当减到0之后,就代表需要进行放行了
            int index = --count;
            // 放行
            if (index == 0) {  // tripped
                boolean ranAction = false;
                try {
                    final Runnable command = barrierCommand;
                    // 如果设置了回调,则立即执行回调,在当前线程中
                    if (command != null)
                        command.run();
                    ranAction = true;
                    // 循环周期迭代,此操作后,其他所有等待线程都将被返回,进入下一轮周期
                    nextGeneration();
                    return 0;
                } finally {
                    // 未知异常,撤销当前的等待
                    if (!ranAction)
                        breakBarrier();
                }
            }

            // loop until tripped, broken, interrupted, or timed out
            for (;;) {
                try {
                    // 一直在此处进行等待,直到被唤醒,被唤醒时,则意味着有事件发生了
                    // 等待中将会释放锁,从而让其他线程进入
                    // 此处的 await() 是一个复杂的故事,因为它要保证在 notify 时的锁竞争问题
                    if (!timed)
                        trip.await();
                    else if (nanos > 0L)
                        nanos = trip.awaitNanos(nanos);
                } catch (InterruptedException ie) {
                    if (g == generation && ! g.broken) {
                        breakBarrier();
                        throw ie;
                    } else {
                        // We're about to finish waiting even if we had not
                        // been interrupted, so this interrupt is deemed to
                        // "belong" to subsequent execution.
                        Thread.currentThread().interrupt();
                    }
                }

                // 此情况为发生了异常,被唤醒,则直接抛出异常退出
                if (g.broken)
                    throw new BrokenBarrierException();

                // 生命周期被迭代,可以放行了
                if (g != generation)
                    return index;

                // 如果是等待超时,则抛出超时异常
                if (timed && nanos <= 0L) {
                    breakBarrier();
                    throw new TimeoutException();
                }
            }
        } finally {
            lock.unlock();
        }
    }

  可以看到,主要逻辑就是在于 生命周期的迭代操作,但是这个生命周期的标志异常的简单:

    // 只有一个标识位, broken 为 true 时,发生了异常,整体退出
    private static class Generation {
        boolean broken = false;
    }

  而到达的线程数足够之后,需要进行周期迭代,只是 Generation 更换一个变量,另外就是要起到通知所有等待线程的作用:

    // CyclicBarrier
    /**
     * Updates state on barrier trip and wakes up everyone.
     * Called only while holding lock.
     */
    private void nextGeneration() {
        // signal completion of last generation
        // 先通知等待线程,但此时当前线程仍然持有锁,所以其他线程仍然处理等待状态
        // 然后再设置下一周期,直到本线程当前同步块退出之后,其他线程才可以进行工作
        // 此处依赖于 ReentrantLock
        // 此处体现 wait/notify 的锁作用域问题
        trip.signalAll();
        // set up next generation
        count = parties;
        generation = new Generation();
    }

  而调用 入口 仅是调用 dowait() 方法而已.

    // CyclicBarrier
    public int await() throws InterruptedException, BrokenBarrierException {
        try {
            return dowait(false, 0L);
        } catch (TimeoutException toe) {
            throw new Error(toe); // cannot happen
        }
    }

  CyclicBarrier 本身的等待逻辑是简单巧妙的,使用 ReentrantLock 的目的是为了实现带超时等待的效果,否则就是一个 wait/notify 机制的实现。当然 wait/notify 的逻辑还是很关键很复杂的,后续如有必要再写一文说明。

  完整代码如下:

public class CyclicBarrier {
    /**
     * Each use of the barrier is represented as a generation instance.
     * The generation changes whenever the barrier is tripped, or
     * is reset. There can be many generations associated with threads
     * using the barrier - due to the non-deterministic way the lock
     * may be allocated to waiting threads - but only one of these
     * can be active at a time (the one to which {@code count} applies)
     * and all the rest are either broken or tripped.
     * There need not be an active generation if there has been a break
     * but no subsequent reset.
     */
    private static class Generation {
        boolean broken = false;
    }

    /** The lock for guarding barrier entry */
    private final ReentrantLock lock = new ReentrantLock();
    /** Condition to wait on until tripped */
    private final Condition trip = lock.newCondition();
    /** The number of parties */
    private final int parties;
    /* The command to run when tripped */
    private final Runnable barrierCommand;
    /** The current generation */
    private Generation generation = new Generation();

    /**
     * Number of parties still waiting. Counts down from parties to 0
     * on each generation.  It is reset to parties on each new
     * generation or when broken.
     */
    private int count;

    /**
     * Updates state on barrier trip and wakes up everyone.
     * Called only while holding lock.
     */
    private void nextGeneration() {
        // signal completion of last generation
        trip.signalAll();
        // set up next generation
        count = parties;
        generation = new Generation();
    }

    /**
     * Sets current barrier generation as broken and wakes up everyone.
     * Called only while holding lock.
     */
    private void breakBarrier() {
        generation.broken = true;
        count = parties;
        trip.signalAll();
    }

    /**
     * Main barrier code, covering the various policies.
     */
    private int dowait(boolean timed, long nanos)
        throws InterruptedException, BrokenBarrierException,
               TimeoutException {
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            final Generation g = generation;

            if (g.broken)
                throw new BrokenBarrierException();

            if (Thread.interrupted()) {
                breakBarrier();
                throw new InterruptedException();
            }

            int index = --count;
            if (index == 0) {  // tripped
                boolean ranAction = false;
                try {
                    final Runnable command = barrierCommand;
                    if (command != null)
                        command.run();
                    ranAction = true;
                    nextGeneration();
                    return 0;
                } finally {
                    if (!ranAction)
                        breakBarrier();
                }
            }

            // loop until tripped, broken, interrupted, or timed out
            for (;;) {
                try {
                    if (!timed)
                        trip.await();
                    else if (nanos > 0L)
                        nanos = trip.awaitNanos(nanos);
                } catch (InterruptedException ie) {
                    if (g == generation && ! g.broken) {
                        breakBarrier();
                        throw ie;
                    } else {
                        // We're about to finish waiting even if we had not
                        // been interrupted, so this interrupt is deemed to
                        // "belong" to subsequent execution.
                        Thread.currentThread().interrupt();
                    }
                }

                if (g.broken)
                    throw new BrokenBarrierException();

                if (g != generation)
                    return index;

                if (timed && nanos <= 0L) {
                    breakBarrier();
                    throw new TimeoutException();
                }
            }
        } finally {
            lock.unlock();
        }
    }

    /**
     * Creates a new {@code CyclicBarrier} that will trip when the
     * given number of parties (threads) are waiting upon it, and which
     * will execute the given barrier action when the barrier is tripped,
     * performed by the last thread entering the barrier.
     *
     * @param parties the number of threads that must invoke {@link #await}
     *        before the barrier is tripped
     * @param barrierAction the command to execute when the barrier is
     *        tripped, or {@code null} if there is no action
     * @throws IllegalArgumentException if {@code parties} is less than 1
     */
    public CyclicBarrier(int parties, Runnable barrierAction) {
        if (parties <= 0) throw new IllegalArgumentException();
        this.parties = parties;
        this.count = parties;
        this.barrierCommand = barrierAction;
    }

    /**
     * Creates a new {@code CyclicBarrier} that will trip when the
     * given number of parties (threads) are waiting upon it, and
     * does not perform a predefined action when the barrier is tripped.
     *
     * @param parties the number of threads that must invoke {@link #await}
     *        before the barrier is tripped
     * @throws IllegalArgumentException if {@code parties} is less than 1
     */
    public CyclicBarrier(int parties) {
        this(parties, null);
    }

    /**
     * Returns the number of parties required to trip this barrier.
     *
     * @return the number of parties required to trip this barrier
     */
    public int getParties() {
        return parties;
    }

    /**
     * Waits until all {@linkplain #getParties parties} have invoked
     * {@code await} on this barrier.
     *
     * 

If the current thread is not the last to arrive then it is * disabled for thread scheduling purposes and lies dormant until * one of the following things happens: *

    *
  • The last thread arrives; or *
  • Some other thread {@linkplain Thread#interrupt interrupts} * the current thread; or *
  • Some other thread {@linkplain Thread#interrupt interrupts} * one of the other waiting threads; or *
  • Some other thread times out while waiting for barrier; or *
  • Some other thread invokes {@link #reset} on this barrier. *
* *

If the current thread: *

    *
  • has its interrupted status set on entry to this method; or *
  • is {@linkplain Thread#interrupt interrupted} while waiting *
* then {
@link InterruptedException} is thrown and the current thread's * interrupted status is cleared. * *

If the barrier is {@link #reset} while any thread is waiting, * or if the barrier {@linkplain #isBroken is broken} when * {@code await} is invoked, or while any thread is waiting, then * {@link BrokenBarrierException} is thrown. * *

If any thread is {@linkplain Thread#interrupt interrupted} while waiting, * then all other waiting threads will throw * {@link BrokenBarrierException} and the barrier is placed in the broken * state. * *

If the current thread is the last thread to arrive, and a * non-null barrier action was supplied in the constructor, then the * current thread runs the action before allowing the other threads to * continue. * If an exception occurs during the barrier action then that exception * will be propagated in the current thread and the barrier is placed in * the broken state. * * @return the arrival index of the current thread, where index * {@code getParties() - 1} indicates the first * to arrive and zero indicates the last to arrive * @throws InterruptedException if the current thread was interrupted * while waiting * @throws BrokenBarrierException if another thread was * interrupted or timed out while the current thread was * waiting, or the barrier was reset, or the barrier was * broken when {@code await} was called, or the barrier * action (if present) failed due to an exception */ public int await() throws InterruptedException, BrokenBarrierException { try { return dowait(false, 0L); } catch (TimeoutException toe) { throw new Error(toe); // cannot happen } } /** * Waits until all {@linkplain #getParties parties} have invoked * {@code await} on this barrier, or the specified waiting time elapses. * *

If the current thread is not the last to arrive then it is * disabled for thread scheduling purposes and lies dormant until * one of the following things happens: *

    *
  • The last thread arrives; or *
  • The specified timeout elapses; or *
  • Some other thread {@linkplain Thread#interrupt interrupts} * the current thread; or *
  • Some other thread {@linkplain Thread#interrupt interrupts} * one of the other waiting threads; or *
  • Some other thread times out while waiting for barrier; or *
  • Some other thread invokes {@link #reset} on this barrier. *
* *

If the current thread: *

    *
  • has its interrupted status set on entry to this method; or *
  • is {@linkplain Thread#interrupt interrupted} while waiting *
* then {
@link InterruptedException} is thrown and the current thread's * interrupted status is cleared. * *

If the specified waiting time elapses then {@link TimeoutException} * is thrown. If the time is less than or equal to zero, the * method will not wait at all. * *

If the barrier is {@link #reset} while any thread is waiting, * or if the barrier {@linkplain #isBroken is broken} when * {@code await} is invoked, or while any thread is waiting, then * {@link BrokenBarrierException} is thrown. * *

If any thread is {@linkplain Thread#interrupt interrupted} while * waiting, then all other waiting threads will throw {@link * BrokenBarrierException} and the barrier is placed in the broken * state. * *

If the current thread is the last thread to arrive, and a * non-null barrier action was supplied in the constructor, then the * current thread runs the action before allowing the other threads to * continue. * If an exception occurs during the barrier action then that exception * will be propagated in the current thread and the barrier is placed in * the broken state. * * @param timeout the time to wait for the barrier * @param unit the time unit of the timeout parameter * @return the arrival index of the current thread, where index * {@code getParties() - 1} indicates the first * to arrive and zero indicates the last to arrive * @throws InterruptedException if the current thread was interrupted * while waiting * @throws TimeoutException if the specified timeout elapses. * In this case the barrier will be broken. * @throws BrokenBarrierException if another thread was * interrupted or timed out while the current thread was * waiting, or the barrier was reset, or the barrier was broken * when {@code await} was called, or the barrier action (if * present) failed due to an exception */ public int await(long timeout, TimeUnit unit) throws InterruptedException, BrokenBarrierException, TimeoutException { return dowait(true, unit.toNanos(timeout)); } /** * Queries if this barrier is in a broken state. * * @return {@code true} if one or more parties broke out of this * barrier due to interruption or timeout since * construction or the last reset, or a barrier action * failed due to an exception; {@code false} otherwise. */ public boolean isBroken() { final ReentrantLock lock = this.lock; lock.lock(); try { return generation.broken; } finally { lock.unlock(); } } /** * Resets the barrier to its initial state. If any parties are * currently waiting at the barrier, they will return with a * {@link BrokenBarrierException}. Note that resets after * a breakage has occurred for other reasons can be complicated to * carry out; threads need to re-synchronize in some other way, * and choose one to perform the reset. It may be preferable to * instead create a new barrier for subsequent use. */ public void reset() { final ReentrantLock lock = this.lock; lock.lock(); try { breakBarrier(); // break the current generation nextGeneration(); // start a new generation } finally { lock.unlock(); } } /** * Returns the number of parties currently waiting at the barrier. * This method is primarily useful for debugging and assertions. * * @return the number of parties currently blocked in {@link #await} */ public int getNumberWaiting() { final ReentrantLock lock = this.lock; lock.lock(); try { return parties - count; } finally { lock.unlock(); } } }

View Code

  

二、简单看一下 CountDownLatch 的同时等待实现

  CountDownLatch 会在初始化时,申请 n 个 permit, 调用 await() 进行阻塞, 直到 permit=0 时,await() 才进行返回。每调用一次 countDown(); permit 都会减1直到为0止;

    // CountDownLatch.await()  等待
    public void await() throws InterruptedException {
        // 仅是去尝试获取一个而已
        sync.acquireSharedInterruptibly(1);
    }
    
    // CountDownLatch.countDown() 释放锁, 当 permit=0 后,放行 await() 
    public void countDown() {
        // 此处仅是委托给了 AQS 进行释放、通知处理
        sync.releaseShared(1);
    }
    
    // CountDownLatch 内部锁实现的是否可以持有锁的逻辑
    /**
     * Synchronization control For CountDownLatch.
     * Uses AQS state to represent count.
     */
    private static final class Sync extends AbstractQueuedSynchronizer {
        private static final long serialVersionUID = 4982264981922014374L;

        Sync(int count) {
            setState(count);
        }

        int getCount() {
            return getState();
        }

        protected int tryAcquireShared(int acquires) {
            // 只要 state=0, 都可以放行
            return (getState() == 0) ? 1 : -1;
        }

        // 释放锁 countDown 逻辑, 做减1操作
        protected boolean tryReleaseShared(int releases) {
            // Decrement count; signal when transition to zero
            for (;;) {
                int c = getState();
                // 如果已经被释放,则直接返回
                if (c == 0)
                    return false;
                // 忽略传入值 releases, 只做减1操作, 所以 state 必定有等于0的时候
                int nextc = c-1;
                if (compareAndSetState(c, nextc))
                    // 只有等于0, 才能进行真正的释放通知操作
                    return nextc == 0;
            }
        }
    }

  可以看出, CountDownLatch 的同时等待实现更加简单,几乎都是依赖于 AQS 进行实现。同样,从实际效果来说,也是一个 wait/notify 的实现。只是此处的 notify 执行完之后就释放了锁,即无法保证 notify 之后的线程安全性。

  上面两个工具也都是AQS实现的,由此也可知AQS的重要性!   

 

唠叨: 论 wait/notify 机制的安全性!

你可能感兴趣的:(CyclicBarrier 是如何做到等待多线程到达一起执行的?)