谈谈iOS中的锁(转载)

原文地址

1 前言

近日工作不是太忙,刚好有时间了解一些其他东西,本来打算今天上午去体检,但是看看天气还是明天再去吧,也有很大一个原因:就是周六没有预约上!闲话少说,这里简单对锁来个简单介绍分享。

2 目录

第一部分:什么是锁

第二部分:锁的分类

第三部分:锁的作用

第四部分:iOS中锁的实现

第一部分:什么是锁

从小就知道锁,就是家里门上的那个锁,用来防止盗窃的锁。它还有钥匙,用于开锁。不过这里的锁,并不是小时候认知的锁,而是站在程序员的角度的锁。这里我就按照我的理解来介绍一下锁。

在计算机科学中,锁是一种同步机制,用于在存在多线程的环境中实施对资源的访问限制。你可以理解成它用于排除并发的一种策略。看例子

1

2

3

4

5if(lock == 0) {

lock = myPID;

}

上面这段代码并不能保证这个任务有个锁,因此它可以在同一时间被多个任务执行。这个时候就有可能多个任务都检测到lock是空闲的,因此两个或者多个任务都将尝试设置lock,而不知道其他的任务也在尝试设置lock。这个时候就会出问题了。 再看看这段代码:

1

2

3

4

5

6

7

8

9

10

11

12

13

14classAcccount {

longval = 0;//这里不可在其他方法修改,只能通过add/minus修改

object thisLock =newobject();

publicvoidadd(constlongx) {

lock(thisLock) {

val +=x;

}

}

publicvoidminus(constlongx) {

lock(thisLock) {

val -=x;

}

}

}

这样就能防止多个任务去修改val了,(这里注意,如果val是public的,那个也会导致一些问题)。

第二部分:锁的分类

锁根据不同的性质可以分成不同的类。

在WiKiPedia介绍中,一般的锁都是建议锁,也就四每个任务去访问公共资源的时候,都需要取得锁的资讯,再根据锁资讯来确定是否可以存取。若存取对应资讯,锁的状态会改变为锁定,因此其他线程不会访问该资源,当结束访问时,锁会释放,允许其他任务访问。有些系统有强制锁,若未经授权的锁访问锁定的资料,在访问时就会产生异常。

在iOS中,锁分为递归锁、条件锁、分布式锁、一般锁(这里是看着NSLock类里面的分类划分的)。

对于数据库的锁分类:

分类方式分类

按锁的粒度划分表级锁、行级锁、页级锁

按锁的级别划分共享锁、排他锁

按加锁方式划分自动锁、显示锁

按锁的使用方式划分乐观锁、悲观锁

按操作划分DML锁、DDL锁

这里就不在详细介绍了,感兴趣的大家可以自己查阅相关资料。

第三部分:锁的作用

这个比较通俗来讲:就是为了防止在多线程(多任务)的情况下对共享资源(临界资源)的脏读或者脏写。也可以理解为:执行多线程时用于强行限制资源访问的同步机制,即并发控制中保证互斥的要求。

第四部分:iOS中锁的实现

先看看iOS中NSLock类的.h文件。这里就不在写上来了。从代码中可以看出,该类分成了几个子类:NSLock、NSConditionLock、NSRecursiveLock以及NSCondition。然后有一个NSLocking的协议:

1

2

3

4

5

6

7@protocol NSLocking

- (void)lock;

- (void)unlock;

@end

这几个子类都遵循了NSLock的协议,这里简单介绍一下其中的几个方法: 对于tryLock方法,尝试获取一个锁,并且立刻返回Bool值,YES表示获取了锁,NO表示没有获取锁失败。 lockBeforeDate:方法,在某个时刻之前获取锁,如果获取成功,则返回YES,NO表示获取锁失败。接下来就让我们看一下iOS中实现锁的方式:

方式1 使用NSLock类

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26- (void)nslockDemo {

NSLock *myLock = [[NSLock alloc] init];

_testLock = [[TestLock alloc] init];

dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{

[myLock lock];

[_testLock method1];

sleep(5);

[myLock unlock];

if([myLock tryLock]) {

NSLog(@"可以获得锁");

}else{

NSLog(@"不可以获得所");

}

});

dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{

sleep(1);

if([myLock tryLock]) {

NSLog(@"---可以获得锁");

}else{

NSLog(@"----不可以获得所");

}

[myLock lock];

[_testLock method2];

[myLock unlock];

});

}

方式2 使用@synchorize

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16- (void)synchronizeDemo {

_testLock = [[TestLock alloc] init];

dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{

@synchronized (_testLock) {

[_testLock method1];

sleep(5);

}

});

dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{

sleep(1);

@synchronized (_testLock) {

[_testLock method2];

}

});

}

对于@synchorize指令中使用的testLock为该锁标示,只有标示相同的时候才满足锁的效果。它的优点是不用显式地创建锁,便可以实现锁的机制。但是它会隐式地添加异常处理程序来保护代码,该程序在抛出异常的时候自动释放锁。

方式3 使用gcd

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16- (void)gcdDemo {

_testLock = [[TestLock alloc] init];

dispatch_semaphore_t semaphore = dispatch_semaphore_create(1);

dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{

dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER);

[_testLock method1];

sleep(5);

dispatch_semaphore_signal(semaphore);

});

dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{

sleep(1);

dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER);

[_testLock method2];

dispatch_semaphore_signal(semaphore);

});

}

方式4 使用phtread

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22- (void)pthreadDemo {

_testLock = [[TestLock alloc] init];

__block pthread_mutex_t mutex;

pthread_mutex_init(&mutex, NULL);

//线程1

dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{

pthread_mutex_lock(&mutex);

[_testLock method1];

sleep(5);

pthread_mutex_unlock(&mutex);

});

//线程2

dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{

sleep(1);

pthread_mutex_lock(&mutex);

[_testLock method2];

pthread_mutex_unlock(&mutex);

});

}

pthread_mutex_t定义在pthread.h,所以记得#include。

3 性能对比

这里简单写一个小程序来进行四种方式的性能对比,这里再固定次数内进行了加锁解锁,然后输出用时,结果如下(测试1、2执行次数不一样:测试1 < 测试2):

1

2

3

4

5

6

7

8

9

10

11

12

13

14测试1

2016-11-05 15:27:52.595 LockDemo[4394:202297] NSLocktimes:0.871843

2016-11-05 15:27:56.335 LockDemo[4394:202297] synthorizetimes:3.738939

2016-11-05 15:27:56.691 LockDemo[4394:202297] gcdtimes:0.355344

2016-11-05 15:27:57.328 LockDemo[4394:202297] pthreadtimes:0.636815

2016-11-05 15:27:57.559 LockDemo[4394:202297] OSSPinLocktimes:0.231013

2016-11-05 15:27:57.910 LockDemo[4394:202297] os_unfair_locktimes:0.350615

测试2

2016-11-05 15:30:54.123 LockDemo[4454:205180] NSLocktimes:1.908103

2016-11-05 15:31:02.112 LockDemo[4454:205180] synthorizetimes:7.988547

2016-11-05 15:31:02.905 LockDemo[4454:205180] gcdtimes:0.792113

2016-11-05 15:31:04.372 LockDemo[4454:205180] pthreadtimes:1.466987

2016-11-05 15:31:04.870 LockDemo[4454:205180] OSSPinLocktimes:0.497487

2016-11-05 15:31:05.637 LockDemo[4454:205180] os_unfair_locktimes:0.767569

这里还测试了OSSPinLock(此类已经被os_unfair_lock所替代)。结果如下: synthorize > NSLock > pthread > gcd > os_unfair_lock >OSSPinLock 这里:

synthorize内部会添加异常处理,所以耗时。

pthread_mutex底层API,处理能力不错。

gcd系统封装的C代码效果比pthread好。

4 总结

简单就介绍这么多。

5 参考文档:

http://www.liuhaihua.cn/archives/220300.html

https://zh.wikipedia.org/zh-hans/%E9%94%81_(%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6)

https://en.wikipedia.org/wiki/Lock_(computer_science)

你可能感兴趣的:(谈谈iOS中的锁(转载))