Scrapy+Redis+MySQL分布式爬取商品信息

源代码来自于基于Scrapy的Python3分布式淘宝爬虫,做了一些改动,对失效路径进行了更新,增加了一些内容。使用了随机User-Agent,scrapy-redis分布式爬虫,使用MySQL数据库存储数据。


目录
第一步 创建并配置scrapy项目
第二步 将数据导出至json文件和MySQL数据库
第三步 设置随机访问头User-Agent
第四步 配置scrapy-redis实现分布式爬虫

数据分析部分:2018.7淘宝粉底市场数据分析


开发环境

  • 电脑系统:macOS High Sierra
  • Python第三方库:scrapy、pymysql、scrapy-redis、redis、redis-py
  • Python版本:Anaconda 4.5.8 ,集成Python版本 3.6.4
  • 数据库: MySQL 8.0.11、redis 4.0.1

第一步 创建scrapy项目

cmd输入:

scrapy startproject taobao
cd taobao
scrapy genspider -t basic tb taobao.com

1. 爬虫程序编写tb.py

  • 在源代码的基础上添加了销量、产品描述信息的爬取;
  • 更新了url分类判断的方式;
  • 抓包取得的评论数网页格式有变化,更新了正则表达式。
# -*- coding: utf-8 -*-
import scrapy
import re
from scrapy.http import Request
from taobao.items import TaobaoItem
import urllib.request

class TbSpider(scrapy.Spider):
    name = 'tb'
    allowed_domains = ['taobao.com']
    start_urls = ['http://taobao.com/']

    def parse(self, response):
        key = input("请输入你要爬取的关键词\t")
        pages = input("请输入你要爬取的页数\t")
        print("\n")
        print("当前爬取的关键词是",key)
        print("\n")
        for i in range(0, int(pages)):
            url = "https://s.taobao.com/search?q=" + str(key) + "&s=" + str(44*i)
            yield Request(url=url, callback=self.page)
        pass
    #搜索页
    def page(self,response):
        body = response.body.decode('utf-8', 'ignore')

        pat_id = '"nid":"(.*?)"'    #匹配id
        pat_now_price = '"view_price":"(.*?)"'      #匹配现价格
        pat_address = '"item_loc":"(.*?)"'      #匹配商家地址
        pat_sale = '"view_sales":"(.*?)人付款"' #销量

        all_id = re.compile(pat_id).findall(body)
        all_now_price = re.compile(pat_now_price).findall(body)
        all_address = re.compile(pat_address).findall(body)
        all_sale = re.compile(pat_sale).findall(body)

        for i in range(0, len(all_id)):
            this_id = all_id[i]
            now_price = all_now_price[i]
            address = all_address[i]
            sale_count = all_sale[i] 
            url = "https://item.taobao.com/item.htm?id=" + str(this_id)
            yield Request(url=url, callback=self.next, meta={ 'now_price': now_price, 'address': address,'sale_count':sale_count})
            pass
        pass
    #详情页
    def next(self, response):
        item = TaobaoItem()
        url = response.url
      
        #由于淘宝和天猫的某些信息采用不同方式的Ajax加载,做一个分类
        if 'tmall' in url:  #天猫、天猫超市、天猫国际
            title = response.xpath("//html/head/title/text()").extract()  #获取商品名称
            #price = response.xpath("//span[@class='tm-count']/text()").extract()  
            #这里获取商品原价格-但一直抓到的是空值,Xpath在xpath finder里验证有效,暂时不知道为什么。。。由于后续会影响到数据库的写入,暂时隐了
            #以下是产品描述信息栏内的信息获得,检索文字标签获得对应内容:
            brand = response.xpath("//li[@id='J_attrBrandName']/text()").re('品牌:\xa0(.*?)$')   #品牌
            produce = response.xpath("//li[contains(text(),'产地')]/text()").re('产地:\xa0(.*?)$') #产地
            effect = response.xpath("//li[contains(text(),'功效')]/text()").re('功效:\xa0(.*?)$') #功效
            pat_id = 'id=(.*?)&'
            this_id = re.compile(pat_id).findall(url)[0]
            pass       
        else:       #淘宝
            title = response.xpath("/html/head/title/text()").extract() #获取商品名称
            #price = response.xpath("//em[@class = 'tb-rmb-num']/text()").extract()  
            #获取商品原价格-和上面保持一致
            brand = response.xpath("//li[contains(text(),'品牌')]/text()").re('品牌:\xa0(.*?)$') #品牌
            produce = response.xpath("//li[contains(text(),'产地')]/text()").re('产地:\xa0(.*?)$') #产地
            effect = response.xpath("//li[contains(text(),'功效')]/text()").re('功效:\xa0(.*?)$') #功效
            pat_id = 'id=(.*?)$'
            this_id = re.compile(pat_id).findall(url)[0]
            pass

        #抓取评论总数
        comment_url = "https://rate.taobao.com/detailCount.do?callback=jsonp144&itemId="+str(this_id) 
        comment_data = urllib.request.urlopen(comment_url).read().decode('utf-8', 'ignore')
        each_comment = '"count":(.*?)}' 
        comment = re.compile(each_comment).findall(comment_data)


        item['title'] = title
        item['link'] = url
        #item['price'] = price
        item['now_price'] = response.meta['now_price']
        item['comment'] = comment
        item['address'] = response.meta['address']
        item['sale_count'] = response.meta['sale_count']
        item['brand']=brand
        item['produce']=produce
        item['effect']=effect
        
        yield item

2. settings.py配置

设置用户代理、不遵循robots.txt协议、取消Cookies。

# -*- coding: utf-8 -*-

# Scrapy settings for taobao project
#
# For simplicity, this file contains only settings considered important or
# commonly used. You can find more settings consulting the documentation:
#
#     http://doc.scrapy.org/en/latest/topics/settings.html
#     http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html
#     http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html

BOT_NAME = 'taobao'

SPIDER_MODULES = ['taobao.spiders']
NEWSPIDER_MODULE = 'taobao.spiders'


# Crawl responsibly by identifying yourself (and your website) on the user-agent
USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:54.0) Gecko/20100101 Firefox/54.0'   #设置用户代理值

# Obey robots.txt rules
ROBOTSTXT_OBEY = False  #不遵循 robots.txt协议

# Configure maximum concurrent requests performed by Scrapy (default: 16)
CONCURRENT_REQUESTS = 100

# Configure a delay for requests for the same website (default: 0)
# See http://scrapy.readthedocs.org/en/latest/topics/settings.html#download-delay
# See also autothrottle settings and docs
# DOWNLOAD_DELAY = 0.25 #设置访问延迟
# The download delay setting will honor only one of:
#CONCURRENT_REQUESTS_PER_DOMAIN = 16
#CONCURRENT_REQUESTS_PER_IP = 16

# Disable cookies (enabled by default)
COOKIES_ENABLED = False #取消Cookies

# Disable Telnet Console (enabled by default)
#TELNETCONSOLE_ENABLED = False

# Override the default request headers:
#DEFAULT_REQUEST_HEADERS = {
#   'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
#   'Accept-Language': 'en',
#}

# Enable or disable spider middlewares
# See http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html
#SPIDER_MIDDLEWARES = {
#    'taobao.middlewares.TaobaoSpiderSpiderMiddleware': 543,
#}

# Enable or disable downloader middlewares
# See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html
#DOWNLOADER_MIDDLEWARES = {
#    'taobao.middlewares.MyCustomDownloaderMiddleware': 543,
#}

# Enable or disable extensions
# See http://scrapy.readthedocs.org/en/latest/topics/extensions.html
#EXTENSIONS = {
#    'scrapy.extensions.telnet.TelnetConsole': None,
#}

# Configure item pipelines
# See http://scrapy.readthedocs.org/en/latest/topics/item-pipeline.html
ITEM_PIPELINES = {
    'taobao.pipelines.TaobaoJsonPipeline':300  #导出文json文件
    'taobao.pipelines.TaobaoPipeline':200   #导出至Mysql
}

# Enable and configure the AutoThrottle extension (disabled by default)
# See http://doc.scrapy.org/en/latest/topics/autothrottle.html
#AUTOTHROTTLE_ENABLED = True
# The initial download delay
#AUTOTHROTTLE_START_DELAY = 5
# The maximum download delay to be set in case of high latencies
#AUTOTHROTTLE_MAX_DELAY = 60
# The average number of requests Scrapy should be sending in parallel to
# each remote server
#AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0
# Enable showing throttling stats for every response received:
#AUTOTHROTTLE_DEBUG = False

# Enable and configure HTTP caching (disabled by default)
# See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings
#HTTPCACHE_ENABLED = True
#HTTPCACHE_EXPIRATION_SECS = 0
#HTTPCACHE_DIR = 'httpcache'
#HTTPCACHE_IGNORE_HTTP_CODES = []
#HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'

3.在items.py中添加存储容器对象

# -*- coding: utf-8 -*-

# Define here the models for your scraped items
#
# See documentation in:
# http://doc.scrapy.org/en/latest/topics/items.html

import scrapy

class TaobaoItem(scrapy.Item):
    # define the fields for your item here like:
    # name = scrapy.Field()
    title = scrapy.Field()
    link = scrapy.Field()
    #price = scrapy.Field()
    comment = scrapy.Field()
    now_price = scrapy.Field()
    address = scrapy.Field()
    sale_count = scrapy.Field()
    brand =  scrapy.Field()
    produce = scrapy.Field()
    effect = scrapy.Field()
    pass

第二步 将数据导出并存储至Mysql数据库

1. 将数据导出为json

在pipeline.py文件内写入如下内容,在setting.py文件中开启(详见settings.py),

# -*- coding: utf-8 -*-
import json
import codecs

class TaobaoJsonPipeline:
    def __init__(self):
        self.file=codecs.open('taobao.json','w',encoding='utf-8')
    def process_item(self, item, spider):
        lines = json.dumps(dict(item), ensure_ascii=False) + '\n'
        self.file.write(lines)
        return item
    def close_spider(self, spider):
        self.file.close()

运行爬虫,在终端输入

scrapy crawl tb --nolog

导出后文件自动存储在爬虫目录下:


Scrapy+Redis+MySQL分布式爬取商品信息_第1张图片
屏幕快照 2018-07-20 下午9.02.19.png

2.将数据导出至MySQL

1)首先要先下载安装MySQL数据库

下载链接,dmg格式,一键安装。(安装过程中要求设置root用户的密码,选择普通加密,如果选高级加密的话后面会一直连接失败....)
设置完成后开启数据库:

Scrapy+Redis+MySQL分布式爬取商品信息_第2张图片
屏幕快照 2018-07-20 下午9.07.37.png

可视化操作安装 Workbentch,
Workbentch连接数据库,建立新的数据库,并新建表格并设置好字段:
Scrapy+Redis+MySQL分布式爬取商品信息_第3张图片
屏幕快照 2018-07-22 下午8.53.15.png

2)在Python中安装pymysql包

cmd输入:conda install pymysql
或者直接用pip install pymysql

3)pipelines.py文件设置

这里数据库存储使用了异步操作,目的是防止插入数据的速度跟不上网页的爬取解析速度,造成阻塞。Python 中提供了 Twisted 框架来实现异步操作,该框架提供了一个连接池,通过连接池可以实现数据插入 MySQL 的异步化。详细教程参考Scrapy 入门笔记(4) --- 使用 Pipeline 保存数据

在pipeline.py文件中加入以下代码,并在setting.py中开启对应pipeline(详见settings.py),

# -*- coding: utf-8 -*-
import pymysql
import pymysql.cursors
from twisted.enterprise import adbapi

class TaobaoPipeline(object):  
    #链接数据库
    def __init__(self,):
        dbparms = dict(
            host='127.0.0.1',
            db='数据库名称',
            user='root',
            passwd='数据库密码',
            charset='utf8',
            cursorclass=pymysql.cursors.DictCursor, 
            use_unicode=True,
        )
        # 指定擦做数据库的模块名和数据库参数参数
        self.dbpool = adbapi.ConnectionPool("pymysql", **dbparms)

    # 使用twisted将mysql插入变成异步执行
    def process_item(self, item, spider):
        query = self.dbpool.runInteraction(self.do_insert, item)
        query.addErrback(self.handle_error, item, spider) #处理异常
           
    #处理异步插入的异常  
    def handle_error(self, failure, item, spider):
        print (failure)
    
    #执行具体的插入
    def do_insert(self, cursor, item): 
       
        #从item中导入
        title = item['title'][0]
        link = item['link']
        #price = item['price'][0]
        comment = item['comment'][0]
        now_price = item['now_price']
        address = item['address']
        sale = item['sale_count']
        brand=item['brand'][0]
        produce=item['produce'][0]
        effect = item['effect'][0]
              
        print('商品标题\t', title)
        print('商品链接\t', link)
        #print('商品原价\t', price)
        print('商品现价\t', now_price)
        print('商家地址\t', address)
        print('评论数量\t', comment)
        print('销量\t', sale)
        print('品牌\t',brand)
        print('产地\t',produce)
        print('功效\t',effect)

        try:            
            sql="insert into taobaokh(title,link,comment,now_price,address,sale,brand,produce,effect) values(%s,%s,%s,%s,%s,%s,%s,%s,%s)"
            values=(title,link,comment,now_price,address,sale,brand,produce,effect)
            cursor.execute(sql,values)
            print('导入成功')
            print('------------------------------\n')
            return item
        except Exception as err:
            pass

运行爬虫:

scrapy crawl tb --nolog
Scrapy+Redis+MySQL分布式爬取商品信息_第4张图片
屏幕快照 2018-07-22 下午8.56.08.png

到此,爬虫基本已经可以正常运转起来了。

第三步 设置设置随机User-Agent

目的是每次请求时通过更换不同的user-agent,可以更好地伪装浏览器。

1.更新了源码的ua列表(PC端),添加到settings.py最后
USER_AGENT_LIST = [ "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36",
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36",
    "Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_5) AppleWebKit/603.2.4 (KHTML, like Gecko) Version/10.1.1 Safari/603.2.4",
    "Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36",
    "Mozilla/5.0 (Windows NT 10.0; WOW64; rv:54.0) Gecko/20100101 Firefox/54.0",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36",
    "Mozilla/5.0 (Windows NT 6.1; WOW64; rv:54.0) Gecko/20100101 Firefox/54.0",
    "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:54.0) Gecko/20100101 Firefox/54.0",
    "Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36",
    "Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0; rv:11.0) like Gecko",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36",
    "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10.12; rv:54.0) Gecko/20100101 Firefox/54.0",
    "Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36",
    "Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36",
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:54.0) Gecko/20100101 Firefox/54.0",
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/51.0.2704.79 Safari/537.36 Edge/14.14393",
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.109 Safari/537.36",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6) AppleWebKit/603.2.5 (KHTML, like Gecko) Version/10.1.1 Safari/603.2.5",
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.104 Safari/537.36",
    "Mozilla/5.0 (Windows NT 10.0; WOW64; Trident/7.0; rv:11.0) like Gecko",
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/52.0.2743.116 Safari/537.36 Edge/15.15063",
    "Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36",
    "Mozilla/5.0 (Windows NT 6.3; WOW64; rv:54.0) Gecko/20100101 Firefox/54.0",
    "Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/56.0.2924.87 Safari/537.36",
    "Mozilla/5.0 (iPad; CPU OS 10_3_2 like Mac OS X) AppleWebKit/603.2.4 (KHTML, like Gecko) Version/10.0 Mobile/14F89 Safari/602.1",
    "Mozilla/5.0 (Windows NT 6.1; rv:54.0) Gecko/20100101 Firefox/54.0",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36",
    "Mozilla/5.0 (Windows NT 10.0; WOW64; rv:53.0) Gecko/20100101 Firefox/53.0",
    "Mozilla/5.0 (Windows NT 6.1; WOW64; rv:53.0) Gecko/20100101 Firefox/53.0",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10.11; rv:54.0) Gecko/20100101 Firefox/54.0",
    "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36",
    "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.109 Safari/537.36",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.109 Safari/537.36",
    "Mozilla/5.0 (X11; Linux x86_64; rv:54.0) Gecko/20100101 Firefox/54.0",
    "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.104 Safari/537.36",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36",
    "Mozilla/5.0 (X11; Linux x86_64; rv:52.0) Gecko/20100101 Firefox/52.0",
    "Mozilla/5.0 (Windows NT 6.1; Trident/7.0; rv:11.0) like Gecko",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_4) AppleWebKit/603.1.30 (KHTML, like Gecko) Version/10.1 Safari/603.1.30",
    "Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:54.0) Gecko/20100101 Firefox/54.0",
    "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.86 Safari/537.36",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36",
    "Mozilla/5.0 (Windows NT 5.1; rv:52.0) Gecko/20100101 Firefox/52.0",
    "Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.109 Safari/537.36",
    "Mozilla/5.0 (Windows NT 6.1; WOW64; rv:52.0) Gecko/20100101 Firefox/52.0",
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.86 Safari/537.36",
    "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Ubuntu Chromium/58.0.3029.110 Chrome/58.0.3029.110 Safari/537.36",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/603.2.5 (KHTML, like Gecko) Version/10.1.1 Safari/603.2.5",
    "Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.104 Safari/537.36",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.104 Safari/537.36",
    "Mozilla/5.0 (X11; Linux x86_64; rv:45.0) Gecko/20100101 Firefox/45.0",
    "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36",
    "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:53.0) Gecko/20100101 Firefox/53.0",
    "Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.86 Safari/537.36",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.86 Safari/537.36",
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.86 Safari/537.36 OPR/46.0.2597.32",
    "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Ubuntu Chromium/59.0.3071.109 Chrome/59.0.3071.109 Safari/537.36",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10.12; rv:53.0) Gecko/20100101 Firefox/53.0",
    "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/56.0.2924.87 Safari/537.36",
    "Mozilla/5.0 (Windows NT 6.3; WOW64; Trident/7.0; rv:11.0) like Gecko",
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36 OPR/45.0.2552.898",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36",
    "Mozilla/5.0 (Windows NT 10.0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36",
    "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36",
    "Mozilla/5.0 (Windows NT 6.1; WOW64; rv:40.0) Gecko/20100101 Firefox/40.1",
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36 OPR/46.0.2597.39",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:54.0) Gecko/20100101 Firefox/54.0",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6) AppleWebKit/601.7.7 (KHTML, like Gecko) Version/9.1.2 Safari/601.7.7",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_3) AppleWebKit/602.4.8 (KHTML, like Gecko) Version/10.0.3 Safari/602.4.8",
    "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36",
    "Mozilla/5.0 (Windows NT 10.0; WOW64; Trident/7.0; Touch; rv:11.0) like Gecko",
    "Mozilla/5.0 (Windows NT 6.1; rv:52.0) Gecko/20100101 Firefox/52.0",
    "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/51.0.2704.106 Safari/537.36",
                   ]

DOWNLOADER_MIDDLEWARES = {
    'taobao.middlewares.ProcessHeaderMidware': 543,
}

github上有人专门写了一个user-agent 的插件,也可以直接调用,链接

2.在middlewares.py文件里添加如下代码:
# encoding: utf-8
from scrapy.utils.project import get_project_settings
import random

settings = get_project_settings()

class ProcessHeaderMidware():
    """process request add request info"""

    def process_request(self, request, spider):
        """
        随机从列表中获得header, 并传给user_agent进行使用
        """
        ua = random.choice(settings.get('USER_AGENT_LIST'))
        spider.logger.info(msg='now entring download midware')
        if ua:
            request.headers['User-Agent'] = ua
            # Add desired logging message here.
            spider.logger.info(u'User-Agent is : {} {}'.format(request.headers.get('User-Agent'), request))
        pass

设置完成。

第四步 使用Scrapy-redis实现分布式爬虫

为了进一步提高效率和防反爬虫能力,就要用到多进程和分布式爬虫了。
Scrapy-redis还有一个好处是支持断点续传,爬的过程中遇到过sracpy卡主住不动的情况,直接重新打开一个终端,输入爬虫指令,又继续跑起来~

1. Scrapy-redis环境搭建:

需要分别安装redis,scrapy-redis,和redis-py三个库:
1)redis
直接使用conda install redis安装(或pip install redis
2) scrapy-redis
由于anaconda中没有scrapy-redis的安装包,需要下载第三方zip安装包,下载链接。安装过程:cmd依次输入

cd /Users/用户名/Downloads
unzip scrapy-redis-master.zip -d/Users/用户名/Downloads/ #解压文件到指定路径
cd scrapy-redis-master 
python setup.py install #安装文件
password:***** #输入密码

如果不使用Anaconda,直接在终端pip install scrapy-redis应该也可以。
3) redis-py
装完redis之后,运行程序一直报错"ImportError: No module named redis",搜过之后发现是Python默认不支持Redis,需要安装redis-py才能正常调用。下载链接
安装方法同上。

2.修改Scrapy项目文件

1)在settings.py中增加以下内容
SCHEDULER = "scrapy_redis.scheduler.Scheduler"  #启用Redis调度存储请求队列
SCHEDULER_PERSIST = True    #不清除Redis队列、这样可以暂停/恢复 爬取
DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"  #确保所有的爬虫通过Redis去重
SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.SpiderPriorityQueue'
REDIS_HOST = '127.0.0.1'  # 也可以根据情况改成 localhost
REDIS_PORT = 6379
REDIS_URL = None
2)在items.py中增加以下内容
from scrapy.loader import ItemLoader
from scrapy.loader.processors import MapCompose, TakeFirst, Join

class TaobaoSpiderLoader(ItemLoader):
    default_item_class = TaobaoItem
    default_input_processor = MapCompose(lambda s: s.strip())
    default_output_processor = TakeFirst()
    description_out = Join()
3)对tb.py文件进行更改

import相关包:

from scrapy_redis.spiders import RedisSpider

修改TbSpider类:

class TbSpider(RedisSpider):
    name = 'tb'
    #allowed_domains = ['taobao.com']
    #start_urls = ['http://taobao.com/']
    redis_key = 'Taobao:start_urls'

配置完成!

3. 运行分布式爬虫

1)打开终端,启动redis服务器redis-server

localhost:~ $ redis-server
3708:C 20 Jul 22:42:41.914 # oO0OoO0OoO0Oo Redis is starting oO0OoO0OoO0Oo
3708:C 20 Jul 22:42:41.915 # Redis version=4.0.10, bits=64, commit=00000000, modified=0, pid=3708, just started
3708:C 20 Jul 22:42:41.915 # Warning: no config file specified, using the default config. In order to specify a config file use redis-server /path/to/redis.conf
3708:M 20 Jul 22:42:41.916 * Increased maximum number of open files to 10032 (it was originally set to 256).
                _._                                                  
           _.-``__ ''-._                                             
      _.-``    `.  `_.  ''-._           Redis 4.0.10 (00000000/0) 64 bit
  .-`` .-```.  ```\/    _.,_ ''-._                                   
 (    '      ,       .-`  | `,    )     Running in standalone mode
 |`-._`-...-` __...-.``-._|'` _.-'|     Port: 6379
 |    `-._   `._    /     _.-'    |     PID: 3708
  `-._    `-._  `-./  _.-'    _.-'                                   
 |`-._`-._    `-.__.-'    _.-'_.-'|                                  
 |    `-._`-._        _.-'_.-'    |           http://redis.io        
  `-._    `-._`-.__.-'_.-'    _.-'                                   
 |`-._`-._    `-.__.-'    _.-'_.-'|                                  
 |    `-._`-._        _.-'_.-'    |                                  
  `-._    `-._`-.__.-'_.-'    _.-'                                   
      `-._    `-.__.-'    _.-'                                       
          `-._        _.-'                                           
              `-.__.-'                                               

3708:M 20 Jul 22:42:41.920 # Server initialized
3708:M 20 Jul 22:42:41.920 * DB loaded from disk: 0.000 seconds
3708:M 20 Jul 22:42:41.920 * Ready to accept connections

看到这个界面就证明服务器开启,关掉窗口。

2)打开一个新的终端,运行爬虫:

scrapy crawl tb --nolog

此时爬虫处于等待状态,需要设置start_url。

3)再打开一个新的终端,输入:

redis-cli
127.0.0.1:6379>LPUSH Taobao:start_urls http://taobao.com
(integer) 1 

返回(integer) 1 则表示设置成功。(指令中的Taobao:start_urls对应tb.py文件中的设置redis_key = 'Taobao:start_urls'

4)此时,爬虫开始运行....MacOS不会像windows一样,弹出多个终端,只在一个终端里跑,但明显速度加快了好多。

5)如果要中途停止爬虫,按ctrl+c。
停止后再输入 scrapy crawl taobao –nolog 运行的话,程序会断点续传,原因是在setting.py中设置了 SCHEDULER_PERSIST = True
如果想取消这个功能,要把True改为False。

6)爬取完毕后,要清除redis缓存

127.0.0.1:6379>flushdb
ok

完毕!

总结:

通过Python3.6和scrapy构建了一个淘宝商品的爬虫,通过scrapy-redis实现了分布式爬虫,最后用MySQL来存储数据。


问题

  • tmall链接下的商品原价格一直抓取失败,xpath在xpath finder验证可行,运行后一直是空值,猜测可能是网页有异步加载,待研究。
  • tmall链接抓取过程中,很多链接进行了重定向(301、302)导致数据无法抓取,应该是跳转登录之类的反爬措施。

(声明:此文章仅作为学习交流,不做为其它用途)

你可能感兴趣的:(Scrapy+Redis+MySQL分布式爬取商品信息)