策划编辑 Vincent
作者 & 编辑 | Vincent
出处丨 AI 前线
AI 前线导读:2017 年的时候,AI 前线进行了一场有关人工智能领域薪资差异的专题策划,这篇名为《25 万年薪的你与 25 万月薪的他,猎头来谈你们之间的差别》的文章引起了读者们的热烈讨论。一年过去了,又到了“金九银十”的招聘旺季,对于应届生们来说,今年的招聘形势如何?相比去年,AI 岗位的热度还那么高吗?我们同时也采访了一些 AI 企业的 HR,他们将从自身的角度给求职者们一些建议,如果你正在 AI 求职的茫茫大海中寻觅方向,这篇文章是你绝对不可错过的!
去年的文章里,我们用各种数据“震惊”了读者,比如这样的:
某公司开出月薪 25 万 + 的高价招聘算法工程师
还有这样的:
根据 AI 前线的调查:2000~2016 年期间,中国的人工智能企业累计增长约为 1470 余家,仅北京市,到 2016 年就有 450 余家人工智能初创企业出现。人工智能大火的同时,相关技术的人才需求也在持续增长着,但是据全球知名职场社交平台领英发布的《全球 AI 领域人才报告》显示,基于领英平台的 中国 AI 领域技术人才数量位居全球第七,相关人才总数却只有 5 万多。
也就意味着:全国将近 1500 家 AI 智能企业在疯狂争抢着 5 万多的人工智能领域人才。
今年,我们仍然以数据开场。
以下数据来自剑桥大学在 2018 年 6 月发布的一份全球 AI 全景报告。
全球约有 22000 名 AI 研究者和工程师拥有博士学位,这其中有有 5000 名高级 AI 研究者,然而,据该机构估计,仅有 3000 名可用的 AI 人才劳动力;亚洲市场紧追西方市场;中国同业互查公开发表数量超过美国。
此外,从地域上来说,美国是全球 AI 人才的温床,岗位空缺 10k,是人才交流最集中的地方,在美国的科技企业中,谷歌是最大的 AI 人才雇主,AI 研究团队超千人规模,居世界第一。
最明显的变化是:机器学习工程师薪水持续上涨。
据《纽约时报》报道,一般来说,刚出校门的博士生或有若干年工作经验但教育水平低于博士的 AI 专家年薪可以达到 30 万 -50 万美元,或通过持有公司股票可能得到更高的薪水。
“在 DeepMind,员工规模扩大到 400 名,成本达到 1.38 亿美元,每名员工成本约为 34500 美元。”
“OpenAI 2016 年为研究负责人 Ilya Sutskever 支付了 190 万美元的薪酬,为 Ian Goodfellow 支付的薪酬超过 80 万美元。”
据百度前主管 Thomas Liang 估计,AI 行业薪资水平较 2014 年翻了一倍。
为了让国内的求职者们更加清晰地看到目前国内人工智能领域的招聘现状,我们采访了一些 AI、大数据企业的 HR,此外还有一些正在奔波求职的应届生们,希望有需要的读者能从他们的真实经历中,获得有用的经验。
从求职者的角度来说,我们得到的反馈最多的就是:今年的工作更难找了!
一位求职者告诉我们:“今年人工智能的发展明显上升了一个台阶,最明显的地方是我们参与的应届生人数更多了,哈哈,因为正参与秋招,感觉到了算法岗求职的压力,科班童鞋找算法岗,非科班童鞋也找算法岗,就业压力明显增大。”
他介绍说,自己本身的教育背景为某双一流 B 段学校的一枚计算机专业的硕士研究生,研究方向为推荐系统、机器学习等。目前正参与秋招,投了大概 30 份简历,只得到了 5 次面试机会,目前还没拿到心仪的 offer。
知乎上,用户“微调”讲述了自己的一段求职经历(已获得授权):在介绍完自己发过的论文,开发过的库之后,面试官提问:“你的这个方向用深度学习怎么做?”他告诉对方这个方向暂时无法大规模应用深度学习,据说对方当时的表情略有失望,强调说他们希望每个人都做过深度学习研究。
虽然机会泡汤了,但是微调君也意识到了一个深刻的问题:AI 领域的岗位正在朝精细化发展,而候选人的竞争力更多的将体现在与岗位的“锲合度”,而非你本身有多好。
最能印证这段话的是另一位求职者的反馈,他表示:在面试过程中,面试官更多考察算法技术功底,会问你一些算法的基本原理,以及在平常的项目中应用了哪些算法,为什么用这样的算法,相比于其他的模型,你的模型的优势在哪里,这些模型又有什么区别与联系等等,他说,企业对应聘者的侧重点更在于基础要扎实,应用要灵活。
就像微调君所说的那样:随着 AI 热潮逐渐趋于理性,企业也更加清楚自己想要的到底是什么样的人,AI 相关的岗位依靠的是员工的质量来取胜的。比如手机上的图片识别,目标候选人是明白如何把识别模型部署到手机上的人,不需要自然语言处理大牛,不需要对机器学习理论十分资深的专家,更不需要一百个程序员。不是说你不够好,而是你不合适。
他认为,大部分求职不顺利的人大都是在“锲合度”的问题上关注不够,经验或者经历不乏广度,但是缺少深度。某个候选人可能是:会用一些 TensorFlow,NLP 项目做过一两个,刷过几个 Kaggle、人脸识别教程,Cousera 上拿过几个证书,但是这些与他本人所要面试的岗位相关性不足,所以竞争力自然不高。
对于上述情况的求职者,最重要的是先搞明白自己的特点、优势是什么,最重要的是你的长处,而不是你的技能有多均衡,在一些业内人士眼里,什么都会一点儿 = 什么都不擅长。
对此,这位微调君给出的建议是:争取成为某一个领域的小专家。
最重要的是记住一点,也是上面反复提及的问题:重点不在于你会多少武功,而是你有多少必杀技可以一招毙命。
当然,除了求职者我们也采访了企业的 HR,来自达观数据和 来也的 HR 给我们的采访提供了帮助。
从招聘者的角度来说,人工智能领域与去年相比最明显的不同有以下几点:
唯一不变的是:行业竞争仍然激烈。
去年的抢人大战,让我们看到了人工智能领域的热浪到底有多高,经历了一年的“冷却期”,人工智能终于趋于理性。
从企业的招聘要求也能看出:与其说是要求严格,不如说是要求具体,大家都知道什么样的岗位要什么样子的人。比如社招 NLP 工程师,除了和去年一样重点关注人选在 NLP、算法和机器学习领域的专业知识和思维方式之外,也会更关注他们在实际工作经验和产品方向的匹配度。
至于很多求职者都很关注的薪资方面,受访的 HR 告诉我们:薪资对比去年变化不是特别明显,但也呈上升趋势。今年的整体经济环境并不理想,所以会有所影响,但对比相对传统的行业,人工智能领域所受影响是相对较小的。
不过,这位 HR 同样也认为:抢人大战,只要战争不止,薪资肯定会不断提升的,尤其现在各家企业都很清楚地意识到,企业拼的就是创新和速度,这两点也都只有人才能实现,越是做人工智能的企业,越重视人才的价值。创新、速度(高效)不取决于数量,而是质量,所以大家对最顶尖优秀的人才需求越来越明确。
从招聘者的角度,两位受访的 HR 也给求职者提出了一些建议:
对于今年迈入人工智能领域的求职者来说,他们一方面要面对这一领域越来越精细化、越来越严格的入行标准,还要面对来自后来者们在政策调整、学校支持下不断提升的技术水平,薪资的诱惑在眼前,巨大的压力在身边,自己的水平不入眼,焦虑的情绪在心间,希望在看过今天的文章后,求职者们能够静下心来,稳扎稳打,努力让自己朝着一个方向钻研积累,并能够有所成就,不论是对于求职还是提升自身,这都是很有帮助的。
当然了,对于那些还在踌躇是否要选择 AI 的学生朋友们,请相信你所相信的,并为之付出十二分的努力,相信未来一定是属于你们的!