考研数学之高等数学知识点整理——12.空间解析几何与向量代数

本系列博客汇总在这里:考研数学知识点汇总系列博客

文章目录

  • 十二、空间解析几何与向量代数
    • 1 向量运算及其性质
      • 1.1 向量的运算
      • 1.2 运算性质
    • 2 向量之间的关系
    • 3 平面方程
    • 4 直线方程

十二、空间解析几何与向量代数

1 向量运算及其性质

1.1 向量的运算

a = { x 1 , y 1 , z 1 } , b = { x 2 , y 2 , z 2 } , c = { x 3 , y 3 , z 3 } a=\{x_1,y_1,z_1\},b=\{x_2,y_2,z_2\},c=\{x_3,y_3,z_3\} a={x1,y1,z1},b={x2,y2,z2},c={x3,y3,z3},则

  • a ± b = { x 1 ± x 2 , y 1 ± y 2 , z 1 ± z 2 } a±b=\{x_1±x_2,y_1±y_2,z_1±z_2\} a±b={x1±x2,y1±y2,z1±z2}
  • k a = { k x 1 , k y 1 , k z 1 } ka=\{kx_1,ky_1,kz_1\} ka={kx1,ky1,kz1}
  • a ⋅ b = ∣ a ∣ ∣ b ∣ cos ⁡ ( a , b ^ ) = x 1 x 2 + y 1 y 2 + z 1 z 2 a·b=|a||b|\cos{(\widehat{a,b})}=x_1x_2+y_1y_2+z_1z_2 ab=abcos(a,b )=x1x2+y1y2+z1z2
  • c = a × b c=a×b c=a×b满足右手法则,垂直于a与b所确定的平面
    a × b = ∣ i j k x 1 y 1 z 1 x 2 y 2 z 2 ∣ a×b=\begin{vmatrix} i & j & k \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix} a×b=ix1x2jy1y2kz1z2
    ∣ c ∣ = ∣ a × b ∣ = ∣ a ∣ ∣ b ∣ sin ⁡ ( a , b ^ ) |c|=|a×b|=|a||b|\sin{(\widehat{a,b})} c=a×b=absin(a,b )
  • ( a , b , c ) = ( a × b ) ⋅ c = ∣ x 1 y 1 z 1 x 2 y 2 z 2 x 3 y 3 z 3 ∣ (a,b,c)=(a×b)·c=\begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix} (a,b,c)=(a×b)c=x1x2x3y1y2y3z1z2z3

1.2 运算性质

  • a ⋅ b = b ⋅ a a·b=b·a ab=ba;(交换律)
  • a ⋅ ( b + c ) = a ⋅ b + a ⋅ c a·(b+c)=a·b+a·c a(b+c)=ab+ac;(分配律)
  • λ ( a ⋅ b ) = ( λ a ) ⋅ b = a ⋅ ( λ b ) λ(a·b)=(λa)·b=a·(λb) λ(ab)=(λa)b=a(λb)
  • a × b = − b × a a×b=-b×a a×b=b×a;(反交换律)
  • a × ( b + c ) = a × b + a × c a×(b+c)=a×b+a×c a×(b+c)=a×b+a×c;(分配律)
  • λ a × b = ( λ a ) × b = a × ( λ b ) λa×b=(λa)×b=a×(λb) λa×b=(λa)×b=a×(λb)
  • ( a , b , c ) = ( b , c , a ) = ( c , a , b ) (a,b,c)=(b,c,a)=(c,a,b) (a,b,c)=(b,c,a)=(c,a,b);(轮换对称性)
  • ( a , b , c ) = − ( a , c , b ) = − ( c , b , a ) = − ( b , a , c ) (a,b,c)=-(a,c,b)=-(c,b,a)=-(b,a,c) (a,b,c)=(a,c,b)=(c,b,a)=(b,a,c)。(两向量互换,混合积变好)

2 向量之间的关系

a = { x 1 , y 1 , z 1 } , b = { x 2 , y 2 , z 2 } , c = { x 3 , y 3 , z 3 } a=\{x_1,y_1,z_1\},b=\{x_2,y_2,z_2\},c=\{x_3,y_3,z_3\} a={x1,y1,z1},b={x2,y2,z2},c={x3,y3,z3},则

  • a ⊥ b ⇔ a ⋅ b = 0 ⇔ x 1 x 2 + y 1 y 2 + z 1 z 2 = 0 a⊥b\Leftrightarrow{a·b=0}\Leftrightarrow{x_1x_2+y_1y_2+z_1z_2=0} abab=0x1x2+y1y2+z1z2=0
  • a / / b ⇔ a × b = 0 ⇔ x 1 x 2 = y 1 y 2 = z 1 z 2 a//b\Leftrightarrow{a×b=0}\Leftrightarrow{\frac{x_1}{x_2}=\frac{y_1}{y_2}=\frac{z_1}{z_2}} a//ba×b=0x2x1=y2y1=z2z1
  • a , b a,b a,b共线 ⇔ \Leftrightarrow ∃不全为零的数λ,μ,使 λ a + μ b = 0 λa+μb=0 λa+μb=0
  • a , b , c a,b,c a,b,c共面 ⇔ \Leftrightarrow ∃不全为零的数λ,μ,γ,使 λ a + μ b + γ c = 0 λa+μb+γc=0 λa+μb+γc=0 ( a , b , c ) = 0 (a,b,c)=0 (a,b,c)=0
  • a , b a,b a,b的夹角余弦 cos ⁡ ( a , b ^ ) = a ⋅ b ∣ a ∣ ∣ b ∣ = x 1 x 2 + y 1 y 2 + z 1 z 2 x 1 2 + y 1 2 + z 1 2 ⋅ x 2 2 + y 2 2 + z 2 2 \cos(\widehat{a,b})=\frac{a·b}{|a||b|}=\frac{x_1x_2+y_1y_2+z_1z_2}{\sqrt{x_1^2+y_1^2+z_1^2}·\sqrt{x_2^2+y_2^2+z_2^2}} cos(a,b )=abab=x12+y12+z12 x22+y22+z22 x1x2+y1y2+z1z2

3 平面方程

  • ① 一般式: A x + B y + C z + D = 0 Ax+By+Cz+D=0 Ax+By+Cz+D=0
  • ② 点法式: A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0 A(x-x_0)+B(y-y_0)+C(z-z_0)=0 A(xx0)+B(yy0)+C(zz0)=0
    过点 M ( x 0 , y 0 , z 0 ) M(x_0,y_0,z_0) M(x0,y0,z0),且法向量为 n = { A , B , C } n=\{A,B,C\} n={A,B,C}
  • ③ 三点式: ∣ x − x 1 y − y 1 z − z 1 x 2 − x 1 y 2 − y 1 z 2 − z 1 x 3 − x 1 y 3 − y 1 z 3 − z 1 ∣ = 0 \begin{vmatrix} x-x_1 & y-y_1 & z-z_1 \\ x_2-x_1 & y_2-y_1 & z_2-z_1 \\ x_3-x_1 & y_3-y_1 & z_3-z_1 \end{vmatrix}=0 xx1x2x1x3x1yy1y2y1y3y1zz1z2z1z3z1=0
  • ④ 截距式: x a + y b + z c = 1 \frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1 ax+by+cz=1

4 直线方程

  • ① 一般式(两平面的交线):
    { A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 \begin{cases} A_1x+B_1y+C_1z+D_1=0 \\ A_2x+B_2y+C_2z+D_2=0 \end{cases} {A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0
    n 1 = { A 1 , B 1 , C 1 } , n 2 = { A 2 , B 2 , C 2 } n_1=\{A_1,B_1,C_1\},n_2=\{A_2,B_2,C_2\} n1={A1,B1,C1},n2={A2,B2,C2}
    直线的方向向量为 s = n 1 × n 2 s=n_1×n_2 s=n1×n2
  • ② 标准式: x − x 0 l = y − y 0 m = z − z 0 n \frac{x-x_0}{l}=\frac{y-y_0}{m}=\frac{z-z_0}{n} lxx0=myy0=nzz0
    过点 M ( x 0 , y 0 , z 0 ) M(x_0,y_0,z_0) M(x0,y0,z0),且方向向量为 s = { l , m , n } s=\{l,m,n\} s={l,m,n}
  • ③ 两点式: x − x 0 x 1 − x 0 = y − y 0 y 1 − y 0 = z − z 0 z 1 − z 0 \frac{x-x_0}{x_1-x_0}=\frac{y-y_0}{y_1-y_0}=\frac{z-z_0}{z_1-z_0} x1x0xx0=y1y0yy0=z1z0zz0
    过点 M ( x 0 , y 0 , z 0 ) , M 1 ( x 1 , y 1 , z 1 ) M(x_0,y_0,z_0),M_1(x_1,y_1,z_1) M(x0,y0,z0)M1(x1,y1,z1)
  • ④ 参数式: { x = x 0 + l t y = y 0 + m t z = z 0 + n t \begin{cases} x=x_0+lt \\ y=y_0+mt \\ z=z_0+nt \end{cases} x=x0+lty=y0+mtz=z0+nt
    过点 M ( x 0 , y 0 , z 0 ) M(x_0,y_0,z_0) M(x0,y0,z0),且方向向量为 s = { l , m , n } s=\{l,m,n\} s={l,m,n}

你可能感兴趣的:(考研数学)