[1.3]Spark core编程(二)之RDD执行流程图与RDD的基本操作

参考

DT大数据梦工厂
Spark官网

场景

  • RDD的基本操作
    1、计算并在控制台输出某文件中 相同行的个数.
    例如,文件内容如下:
    hello world
    hello world
    hadoop
    spark
    flink
    spark
    spark

    则输出结果:
flink:1
hello world:2
spark:3
hadoop:1

2、WordCount程序的编写并画出相关RDD执行流程图

分析

一、代码

package main.scala
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
/**
 *  RDD基本操作
 */
object RDDOps {

  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setMaster("local[*]").setAppName("RDDBaseOnCollection")
    val sc = new SparkContext(conf)
    /*
     *  计算并输出文件中 相同行的个数
     */
    val rows = sc.textFile("file:///home/pengyucheng/java/rdd2.txt")
    val rowCount = rows.map(row=>(row,1))
    val sameRowCounts = rowCount.reduceByKey(_+_)
    sameRowCounts.collect().foreach(pair => println(pair._1+":"+pair._2))   
    /*
     *  单词计数
     */
    rows.flatMap(_.split(" ")).map(word=>(word,1)).reduceByKey(_+_).collect.foreach(println)
  }
}

二、执行结果

scala> val rows = sc.textFile("file:///home/pengyucheng/java/rdd2.txt")
16/05/26 15:42:49 WARN SizeEstimator: Failed to check whether UseCompressedOops is set; assuming yes
rows: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[1] at textFile at :27

scala>  val rowCount = rows.map(row=>(row,1))
rowCount: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[2] at map at :29

scala> val sameRowCounts = rowCount.reduceByKey(_+_)
sameRowCounts: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[3] at reduceByKey at :31

scala> sameRowCounts.collect().foreach(pair => println(pair._1+":"+pair._2))
flink:1
hello world:2
spark:3
hadoop:1

三、wordcount RDD流程图

[1.3]Spark core编程(二)之RDD执行流程图与RDD的基本操作_第1张图片

总结

1、RDD的操作分成三大类:transformation(eg、flatMap,reduceByKey)、action(eg、collect,foreach,saveAsTextFile) 与 controller(eg、persist,cache)
2、action触发job,shuffle触发stage

[1.3]Spark core编程(二)之RDD执行流程图与RDD的基本操作_第2张图片

你可能感兴趣的:(Spark)