人脸表情识别——定制自己的数据加载方式

背景

将人脸分割成几部分,送入并行的网络结构。出现的问题是:
使用torchvision.datasets.ImageLoader函数加载数据集后,当使用torch.utils.data.DataLoader进行shuffle后,这几部分的图像的Label无法一一对应,即无法再并行网络中对各部分的图像特征进行融合。
以下是我的解决方案,直接给代码,有时间在来详细解释。

代码

1.重写ImageFolder类

folder.py

# -*- coding: utf-8 -*-
import os
import torch
import torchvision
from PIL import Image
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
import random


IMG_EXTENSIONS = ['.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm']


def make_dataset(dir, class_to_idx):
    images = []
    dir = os.path.expanduser(dir)
    for target in sorted(os.listdir(dir)):
        d = os.path.join(dir, target)
        if not os.path.isdir(d):
            continue

        for root, _, fnames in sorted(os.walk(d)):
            for fname in sorted(fnames):
                if is_image_file(fname):
                    path = os.path.join(root, fname)
                    item = (path, class_to_idx[target])
                    images.append(item)
    random.shuffle(images)  # 在这里进行洗牌,从而代替DataLoader中的shuffle
    return images


def is_image_file(filename):
    """Checks if a file is an image.

    Args:
        filename (string): path to a file

    Returns:
        bool: True if the filename ends with a known image extension
    """
    filename_lower = filename.lower()
    return any(filename_lower.endswith(ext) for ext in IMG_EXTENSIONS)


def find_classes(dir):
    classes = [d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d))]
    classes.sort()
    class_to_idx = {classes[i]: i for i in range(len(classes))}
    return classes, class_to_idx


def default_loader(path):
    from torchvision import get_image_backend
    if get_image_backend() == 'accimage':
        return accimage_loader(path)
    else:
        return pil_loader(path)


def pil_loader(path):
    # open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
    with open(path, 'rb') as f:
        with Image.open(f) as img:
            return img.convert('RGB')


def accimage_loader(path):
    import accimage
    try:
        return accimage.Image(path)
    except IOError:
        # Potentially a decoding problem, fall back to PIL.Image
        return pil_loader(path)

# 重写ImageFolder类
class MyImageFolder(datasets.ImageFolder):
    def __init__(self, imgs, root, transform=None, target_transform=None, loader=default_loader):
        super(MyImageFolder, self).__init__(root, transform, target_transform, loader)
        self.imgs = imgs


def imshow(inp, title=None):
    """Imshow for Tensor."""
    inp = inp.numpy().transpose((1, 2, 0))
    plt.imshow(inp)
    if title is not None:
        plt.title(title)
    plt.pause(10)  # pause a bit so that plots are updated


data_tranform = transforms.Compose([
    transforms.ToTensor()
])


if __name__ == '__main__':
    data_dir = r'E:\Experiment\fer2013\datasets\test'
    class_names = ['nature', 'anger', 'disgust', 'fear', 'happy', 'sadness', 'surprise']
    classes, class_to_idx = find_classes(data_dir)
    print(classes)
    print(class_to_idx)
    imgs = make_dataset(data_dir, class_to_idx)
    print(len(imgs))
    sets = MyImageFolder(imgs, data_dir, transform=data_tranform)
    print(len(sets))
    loader = torch.utils.data.DataLoader(sets, batch_size=4, shuffle=False, num_workers=4)
    inputs, targets = next(iter(loader))
    out = torchvision.utils.make_grid(inputs)
    imshow(out, title=[class_names[x] for x in targets])

定义loader

mydataloader.py

# -*- coding: utf-8 -*-
import torch
import os
import numpy as np
import matplotlib.pyplot as plt
import torchvision
from torchvision import datasets, transforms
from folder import MyImageFolder, make_dataset, find_classes

batch_size = 4
ck_folders = r'E:\FERS\CK+\CK_FACEPARTS_DB1'
folders = ['folder_0', 'folder_1', 'folder_2', 'folder_3', 'folder_4']
global_sets = [os.path.join(x, 'global') for x in folders]
lefteye_sets = [os.path.join(x, 'lefteye') for x in folders]
righteye_sets = [os.path.join(x, 'righteye') for x in folders]
mouth_sets = [os.path.join(x, 'mouth') for x in folders]

data_transform = {
    'global': transforms.Compose([
        transforms.Grayscale(),
        transforms.Resize((64, 64)),
        transforms.ToTensor(),
    ]),
    'eye': transforms.Compose([
        transforms.Grayscale(),
        transforms.Resize((64, 64)),
        transforms.ToTensor(),
    ]),
    'mouth': transforms.Compose([
        transforms.Grayscale(),
        transforms.Resize((32, 64)),
        transforms.ToTensor(),
    ])
}

classes, class_to_idx = find_classes(os.path.join(ck_folders, global_sets[0]))
g_imgs = [make_dataset(os.path.join(ck_folders, global_sets[x]), class_to_idx) for x in range(5)]
lefteye_imgs = [[(item[0].replace('global', 'lefteye'), item[1]) for item in imgs] for imgs in g_imgs]
righteye_imgs = [[(item[0].replace('global', 'righteye'), item[1]) for item in imgs] for imgs in g_imgs]
moutn_imgs = [[(item[0].replace('global', 'mouth'), item[1]) for item in imgs] for imgs in g_imgs]
# global face
ck_global_datasets = [MyImageFolder(g_imgs[x], os.path.join(ck_folders, global_sets[x]),
                                    transform=data_transform['global']) for x in range(5)]
ck_global_dataset_0 = torch.utils.data.ConcatDataset([ck_global_datasets[i] for i in range(5) if i != 0])  # testset 0
ck_global_dataset_1 = torch.utils.data.ConcatDataset([ck_global_datasets[i] for i in range(5) if i != 1])  # testset 1
ck_global_dataset_2 = torch.utils.data.ConcatDataset([ck_global_datasets[i] for i in range(5) if i != 2])  # testset 2
ck_global_dataset_3 = torch.utils.data.ConcatDataset([ck_global_datasets[i] for i in range(5) if i != 3])  # testset 3
ck_global_dataset_4 = torch.utils.data.ConcatDataset([ck_global_datasets[i] for i in range(5) if i != 4])  # testset 4

ck_global_trainloader = torch.utils.data.DataLoader(ck_global_dataset_0, batch_size=batch_size, shuffle=False, num_workers=4)
ck_global_testloader = torch.utils.data.DataLoader(ck_global_datasets[0], batch_size=batch_size, shuffle=False, num_workers=4)

# left eye
ck_lefteye_datasets = [MyImageFolder(lefteye_imgs[x], os.path.join(ck_folders, lefteye_sets[x]),
                                            transform=data_transform['eye']) for x in range(5)]
ck_lefteye_dataset_0 = torch.utils.data.ConcatDataset([ck_lefteye_datasets[i] for i in range(5) if i != 0])  # testset 0
ck_lefteye_dataset_1 = torch.utils.data.ConcatDataset([ck_lefteye_datasets[i] for i in range(5) if i != 1])  # testset 1
ck_lefteye_dataset_2 = torch.utils.data.ConcatDataset([ck_lefteye_datasets[i] for i in range(5) if i != 2])  # testset 2
ck_lefteye_dataset_3 = torch.utils.data.ConcatDataset([ck_lefteye_datasets[i] for i in range(5) if i != 3])  # testset 3
ck_lefteye_dataset_4 = torch.utils.data.ConcatDataset([ck_lefteye_datasets[i] for i in range(5) if i != 4])  # testset 4

ck_lefteye_trainloader = torch.utils.data.DataLoader(ck_lefteye_dataset_0, batch_size=batch_size, shuffle=False, num_workers=4)
ck_lefteye_testloader = torch.utils.data.DataLoader(ck_lefteye_datasets[0], batch_size=batch_size, shuffle=False, num_workers=4)

# right eye
ck_righteye_datasets = [MyImageFolder(righteye_imgs[x], os.path.join(ck_folders, righteye_sets[x]),
                                             transform=data_transform['eye']) for x in range(5)]
ck_righteye_dataset_0 = torch.utils.data.ConcatDataset([ck_righteye_datasets[i] for i in range(5) if i != 0])  # testset 0
ck_righteye_dataset_1 = torch.utils.data.ConcatDataset([ck_righteye_datasets[i] for i in range(5) if i != 1])  # testset 1
ck_righteye_dataset_2 = torch.utils.data.ConcatDataset([ck_righteye_datasets[i] for i in range(5) if i != 2])  # testset 2
ck_righteye_dataset_3 = torch.utils.data.ConcatDataset([ck_righteye_datasets[i] for i in range(5) if i != 3])  # testset 3
ck_righteye_dataset_4 = torch.utils.data.ConcatDataset([ck_righteye_datasets[i] for i in range(5) if i != 4])  # testset 4

ck_righteye_trainloader = torch.utils.data.DataLoader(ck_righteye_dataset_0, batch_size=batch_size, shuffle=False, num_workers=4)
ck_righteye_testloader = torch.utils.data.DataLoader(ck_righteye_datasets[0], batch_size=batch_size, shuffle=False, num_workers=4)

# mouth
ck_mouth_datasets = [MyImageFolder(moutn_imgs[x], os.path.join(ck_folders, mouth_sets[x]),
                                          transform=data_transform['mouth']) for x in range(5)]
ck_mouth_dataset_0 = torch.utils.data.ConcatDataset([ck_mouth_datasets[i] for i in range(5) if i != 0])  # testset 0
ck_mouth_dataset_1 = torch.utils.data.ConcatDataset([ck_mouth_datasets[i] for i in range(5) if i != 1])  # testset 1
ck_mouth_dataset_2 = torch.utils.data.ConcatDataset([ck_mouth_datasets[i] for i in range(5) if i != 2])  # testset 2
ck_mouth_dataset_3 = torch.utils.data.ConcatDataset([ck_mouth_datasets[i] for i in range(5) if i != 3])  # testset 3
ck_mouth_dataset_4 = torch.utils.data.ConcatDataset([ck_mouth_datasets[i] for i in range(5) if i != 4])  # testset 4

ck_mouth_trainloader = torch.utils.data.DataLoader(ck_mouth_dataset_0, batch_size=batch_size, shuffle=False, num_workers=4)
ck_mouth_testloader = torch.utils.data.DataLoader(ck_mouth_datasets[0], batch_size=batch_size, shuffle=False, num_workers=4)


def imshow(inp, title=None):
    """Imshow for Tensor."""
    inp = inp.numpy().transpose((1, 2, 0))
    # mean = np.array([0.485, 0.456, 0.406])
    # std = np.array([0.229, 0.224, 0.225])
    # inp = std * inp + mean
    inp = np.clip(inp, 0, 1)
    plt.imshow(inp)
    if title is not None:
        plt.title(title)
    plt.pause(2)  # pause a bit so that plots are updated


if __name__ == '__main__':
    # for imgs in g_imgs:
    #     print(imgs[:3])
    # print('-' * 10)
    # for imgs in lefteye_imgs:
    #     print(imgs[:3])
    # print('-' * 10)
    # for imgs in righteye_imgs:
    #     print(imgs[:3])
    # print('-' * 10)
    # for imgs in moutn_imgs:
    #     print(imgs[:3])

    # (0=neutral, 1=anger, 2=contempt, 3=disgust, 4=fear, 5=happy, 6=sadness, 7=surprise)
    # class_names = ['nature', 'anger', 'contempt', 'disgust', 'fear', 'happy', 'sadness', 'surprise']
    class_names = ['nature', 'anger', 'disgust', 'fear', 'happy', 'sadness', 'surprise']

    # global face
    print('train size: {}, train batch nums:{}'.format(len(ck_global_dataset_0), len(ck_global_trainloader)))
    print('test size: {}, test batch nums:{}'.format(len(ck_global_datasets[0]), len(ck_global_testloader)))
    inputs, classes = next(iter(ck_global_trainloader))
    out = torchvision.utils.make_grid(inputs)
    imshow(out, title=[class_names[x] for x in classes])

    # left eye
    print('train size: {}, train batch nums:{}'.format(len(ck_lefteye_dataset_0), len(ck_lefteye_trainloader)))
    print('test size: {}, test batch nums:{}'.format(len(ck_lefteye_datasets[0]), len(ck_lefteye_testloader)))
    inputs, classes = next(iter(ck_lefteye_trainloader))
    out = torchvision.utils.make_grid(inputs)
    imshow(out, title=[class_names[x] for x in classes])

    # left eye
    print('train size: {}, train batch nums:{}'.format(len(ck_righteye_dataset_0), len(ck_righteye_trainloader)))
    print('test size: {}, test batch nums:{}'.format(len(ck_righteye_datasets[0]), len(ck_righteye_testloader)))
    inputs, classes = next(iter(ck_righteye_trainloader))
    out = torchvision.utils.make_grid(inputs)
    imshow(out, title=[class_names[x] for x in classes])

    # mouth
    print('train size: {}, train batch nums:{}'.format(len(ck_mouth_dataset_0), len(ck_mouth_trainloader)))
    print('test size: {}, test batch nums:{}'.format(len(ck_mouth_datasets[0]), len(ck_mouth_testloader)))
    inputs, classes = next(iter(ck_mouth_trainloader))
    out = torchvision.utils.make_grid(inputs)
    imshow(out, title=[class_names[x] for x in classes])

你可能感兴趣的:(深度学习-算法)