pyspark dataframe将一行分成多行并标记序号(index)

原始数据如下:

gid score
a1 90 80 79 80
a2 79 89 45 60
a3 57 56 89 75
from pyspark.sql.functions import udf, col
from pyspark.sql.types import MapType, IntegerType, StringType

def udf_array_to_map(array):
    if array is None:
        return array
    return dict((i, v) for i, v in enumerate(array))

# col(): returns a column based on the given column name
# MapType: 表示包括一组key-value的值.通过keyType表示key数据的类型,通过valueType表示value数据的类型.
#          最后一个参数指明mapType重点值是否有null值
def generate_idx_for_df(df, id_name, col_name, col_schema):
    """
    generate_idx_for_df, explodes rows with array as a column into a new row for each
    element in the array, with 'INTEGER_IDX' indicating its index in the original array.
    :param df: dataframe with array columns
    :param id_name: the id field of df
    :param col_name: the col of df to explode
    :param col_schema: the schema of each element in col_name array
    :return: new df with exploded rows.
    """
    idx_udf = udf(lambda x: udf_array_to_map(x), MapType(IntegerType(), col_schema, True))
    
    return df.withColumn('idx_columns', idx_udf(col(col_name))) \
            .select(id_name, explode('idx_columns').alias('INTEGER_IDX', 'col'))

 方法的主要思想是利用pyspark.sql.functions中的udf(用户自定义函数),对dataframe的每一行遍历并添加字典序

注意!!!udf的返回数据类型一定要是map否则默认为string类型,则后续explode操作会报错,如下:

gid s idx_columns
a1 [90, 80, 79, 80] {0=90, 1=80, 2=79...
a2 [79, 89, 45, 60] {0=79, 1=89, 2=45...
a3 [57, 56, 89, 75] {0=57, 1=56, 2=89...

org.apache.spark.sql.AnalysisException: cannot resolve 'explode(idx_columns)' due to data type mismatch: input to function explode should be array or map type, not StringType;

正确的中间结果应该如下所示:

gid s idx_columns
a1 [90, 80, 79, 80] Map(0 -> 90, 1 ->...
a2 [79, 89, 45, 60] Map(0 -> 79, 1 ->...
a3 [57, 56, 89, 75] Map(0 -> 57, 1 ->...
from pyspark.sql.functions import split, explode
df_split = df.withColumn("s", split(df['score'], " ")).select('gid', 's')
df_split.show()
col_schema = StringType()
df_index = generate_idx_for_df(df_split, 'gid', 's', col_schema)
df_index.show()

最后分割完成后的结果如下所示 :

gid INTEGER_IDX col
a1 0 90
a1 1 80
a1 2 79
a1 3 80
a2 0 79
a2 1 89
a2 2 45
a2 3 60
a3 0 57
a3 1 56
a3 2 89
a3 3 75

参考资料:https://www.programcreek.com/python/example/98237/pyspark.sql.functions.explode

 

你可能感兴趣的:(spark)