java自己手动控制kafka的offset

之前使用kafka的KafkaStream:http://blog.csdn.net/qq_20641565/article/details/60810174,让每个消费者和对应的patition建立对应的流来读取kafka上面的数据,如果comsumer得到数据,那么kafka就会自动去维护该comsumer的offset,例如在获取到kafka的消息后正准备入库(未入库),但是消费者挂了,那么如果让kafka自动去维护offset,它就会认为这条数据已经被消费了,那么会造成数据丢失。

但是kafka可以让你自己去手动提交,如果在上面的场景中,那么需要我们手动commit,如果comsumer挂了 那么程序就不会执行commit这样的话 其他同group的消费者又可以消费这条数据,保证数据不丢,先要做如下设置:

//设置不自动提交,自己手动更新offset
properties.put("enable.auto.commit", "false");

使用如下api提交:

consumer.commitSync();

注意:

刚做了个测试,如果我从kafka中取出5条数据,分别为1,2,3,4,5,如果消费者在执行一些逻辑在执行1,2,3,4的时候都失败了未提交commit,然后消费5做逻辑成功了提交了commit,那么offset也会被移动到5那一条数据那里,1,2,3,4 相当于也会丢失

如果是做消费者取出数据执行一些操作,全部都失败的话,然后重启消费者,这些数据会从失败的时候重新开始读取

所以消费者还是应该自己做容错机制

测试项目结构如下:

java自己手动控制kafka的offset_第1张图片

其中ConsumerThreadNew类:

package com.lijie.kafka;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

/**
 * 
 *                       
 * @Filename ConsumerThreadNew.java
 *
 * @Description 
 *
 * @Version 1.0
 *
 * @Author Lijie
 *
 * @Email [email protected]
 *       
 * @History
 *
  • Author: Lijie
  • *
  • Date: 2017年3月21日
  • *
  • Version: 1.0
  • *
  • Content: create
  • * */
    public class ConsumerThreadNew implements Runnable { private static Logger LOG = LoggerFactory.getLogger(ConsumerThreadNew.class); //KafkaConsumer kafka生产者 private KafkaConsumer consumer; //消费者名字 private String name; //消费的topic组 private List topics; //构造函数 public ConsumerThreadNew(KafkaConsumer consumer, String topic, String name) { super(); this.consumer = consumer; this.name = name; this.topics = Arrays.asList(topic); } @Override public void run() { consumer.subscribe(topics); List> buffer = new ArrayList<>(); // 批量提交数量 final int minBatchSize = 1; while (true) { ConsumerRecords records = consumer.poll(100); for (ConsumerRecord record : records) { LOG.info("消费者的名字为:" + name + ",消费的消息为:" + record.value()); buffer.add(record); } if (buffer.size() >= minBatchSize) { //这里就是处理成功了然后自己手动提交 consumer.commitSync(); LOG.info("提交完毕"); buffer.clear(); } } } }

    MyConsume类如下:

    package com.lijie.kafka;
    
    import java.util.Properties;
    import java.util.concurrent.ExecutorService;
    import java.util.concurrent.Executors;
    
    import org.apache.kafka.clients.consumer.KafkaConsumer;
    import org.slf4j.Logger;
    import org.slf4j.LoggerFactory;
    
    /**
     * 
     *                       
     * @Filename MyConsume.java
     *
     * @Description 
     *
     * @Version 1.0
     *
     * @Author Lijie
     *
     * @Email [email protected]
     *       
     * @History
     *
  • Author: Lijie
  • *
  • Date: 2017年3月21日
  • *
  • Version: 1.0
  • *
  • Content: create
  • * */
    public class MyConsume { private static Logger LOG = LoggerFactory.getLogger(MyConsume.class); public MyConsume() { // TODO Auto-generated constructor stub } public static void main(String[] args) { Properties properties = new Properties(); properties.put("bootstrap.servers", "10.0.4.141:19093,10.0.4.142:19093,10.0.4.143:19093"); //设置不自动提交,自己手动更新offset properties.put("enable.auto.commit", "false"); properties.put("auto.offset.reset", "latest"); properties.put("zookeeper.connect", "10.0.4.141:2181,10.0.4.142:2181,10.0.4.143:2181"); properties.put("session.timeout.ms", "30000"); properties.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); properties.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); properties.put("group.id", "lijieGroup"); properties.put("zookeeper.connect", "192.168.80.123:2181"); properties.put("auto.commit.interval.ms", "1000"); ExecutorService executor = Executors.newFixedThreadPool(5); //执行消费 for (int i = 0; i < 7; i++) { executor.execute(new ConsumerThreadNew(new KafkaConsumer(properties), "lijietest", "消费者" + (i + 1))); } } }

    MyProducer类如下:

    package com.lijie.kafka;
    
    import java.util.Properties;
    
    import org.apache.kafka.clients.producer.KafkaProducer;
    import org.apache.kafka.clients.producer.ProducerRecord;
    
    /**
     * 
     *                       
     * @Filename MyProducer.java
     *
     * @Description 
     *
     * @Version 1.0
     *
     * @Author Lijie
     *
     * @Email [email protected]
     *       
     * @History
     *
  • Author: Lijie
  • *
  • Date: 2017年3月21日
  • *
  • Version: 1.0
  • *
  • Content: create
  • * */
    public class MyProducer { private static Properties properties; private static KafkaProducer pro; static { //配置 properties = new Properties(); properties.put("bootstrap.servers", "10.0.4.141:19093,10.0.4.142:19093,10.0.4.143:19093"); //序列化类型 properties .put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer"); properties.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer"); //创建生产者 pro = new KafkaProducer<>(properties); } public static void main(String[] args) throws Exception { produce("lijietest"); } public static void produce(String topic) throws Exception { //模拟message // String value = UUID.randomUUID().toString(); for (int i = 0; i < 10000; i++) { //封装message ProducerRecord pr = new ProducerRecord(topic, i + ""); //发送消息 pro.send(pr); Thread.sleep(1000); } } }

    pom文件如下:

    <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
        <modelVersion>4.0.0modelVersion>
        <groupId>lijie-kafka-offsetgroupId>
        <artifactId>lijie-kafka-offsetartifactId>
        <version>0.0.1-SNAPSHOTversion>
        <dependencies>
            <dependency>
                <groupId>org.apache.kafkagroupId>
                <artifactId>kafka_2.11artifactId>
                <version>0.10.1.1version>
            dependency>
            <dependency>
                <groupId>org.apache.hadoopgroupId>
                <artifactId>hadoop-commonartifactId>
                <version>2.2.0version>
            dependency>
            <dependency>
                <groupId>org.apache.hadoopgroupId>
                <artifactId>hadoop-hdfsartifactId>
                <version>2.2.0version>
            dependency>
            <dependency>
                <groupId>org.apache.hadoopgroupId>
                <artifactId>hadoop-clientartifactId>
                <version>2.2.0version>
            dependency>
            <dependency>
                <groupId>org.apache.hbasegroupId>
                <artifactId>hbase-clientartifactId>
                <version>1.0.3version>
            dependency>
            <dependency>
                <groupId>org.apache.hbasegroupId>
                <artifactId>hbase-serverartifactId>
                <version>1.0.3version>
            dependency>
            <dependency>
                <groupId>org.apache.hadoopgroupId>
                <artifactId>hadoop-hdfsartifactId>
                <version>2.2.0version>
            dependency>
            <dependency>
                <groupId>jdk.toolsgroupId>
                <artifactId>jdk.toolsartifactId>
                <version>1.7version>
                <scope>systemscope>
                <systemPath>${JAVA_HOME}/lib/tools.jarsystemPath>
            dependency>
            <dependency>
                <groupId>org.apache.httpcomponentsgroupId>
                <artifactId>httpclientartifactId>
                <version>4.3.6version>
            dependency>
        dependencies>
        <build>
            <plugins>
                <plugin>
                    <groupId>org.apache.maven.pluginsgroupId>
                    <artifactId>maven-compiler-pluginartifactId>
                    <configuration>
                        <source>1.7source>
                        <target>1.7target>
                    configuration>
                plugin>
            plugins>
        build>
    project>

    你可能感兴趣的:(kafka)