注:以下全部都是各个渠道查询得到
安装了vs2015和cuda的包以后就可以创建第一个cuda程序了
以下对这个第一个程序进行分析
//要使用 runtime API 的时候,需要 include cuda_runtime.h。
#include "cuda_runtime.h"
//查看device性能参数
#include "device_launch_parameters.h"
#include
//函数声明
//这个我暂且把他叫链接cpu和gpu的一个小过道函数吧
cudaError_t addWithCuda(int *c, const int *a, const int *b, unsigned int size);
//调用gpu执行此函数
__global__ void addKernel(int *c, const int *a, const int *b)
{
int i = threadIdx.x;
c[i] = a[i] + b[i];
}
int main()
{
const int arraySize = 6;
const int a[arraySize] = { 1, 2, 3, 4, 5, 6 };
const int b[arraySize] = { 10, 20, 30, 40, 50, 60 };
int c[arraySize] = { 0 };
// 通过过道函数去调用gpu执行加法工作
cudaError_t cudaStatus = addWithCuda(c, a, b, arraySize);
//出错判断
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "addWithCuda failed!");
return 1;
}
//显示结果
printf("{1,2,3,4,5,6} + {10,20,30,40,50,60} = {%d,%d,%d,%d,%d, %d}\n",
c[0], c[1], c[2], c[3], c[4], c[5]);
// cudaDeviceReset must be called before exiting in order for profiling and
// tracing tools such as Nsight and Visual Profiler to show complete traces.
//cudaDeviceReset重置当前线程所关联过的当前设备的所有资源
如在调用cuda的过程中出现中途错误,需要提前退出程序,可以调用这个cudaDeviceReset来清空之前所关联过得所有资源。
cudaStatus = cudaDeviceReset();
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaDeviceReset failed!");
return 1;
}
//用来观察结果
getchar();
return 0;
}
// Helper function for using CUDA to add vectors in parallel.
//辅助函数使用CUDA来并行地添加向量。
cudaError_t addWithCuda(int *c, const int *a, const int *b, unsigned int size)
{
int *dev_a = 0;
int *dev_b = 0;
int *dev_c = 0;
cudaError_t cudaStatus;
// Choose which GPU to run on, change this on a multi-GPU system.
//使用了cudaSetDevice(0)这个操作,0表示能搜索到的第一个设备号,如果是多gpu可以改动这个0
cudaStatus = cudaSetDevice(0);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaSetDevice failed! Do you have a CUDA-capable GPU installed?");
goto Error;
}
// Allocate GPU buffers for three vectors (two input, one output) .
//分配内存
cudaStatus = cudaMalloc((void**)&dev_c, size * sizeof(int));
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMalloc failed!");
goto Error;
}
cudaStatus = cudaMalloc((void**)&dev_a, size * sizeof(int));
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMalloc failed!");
goto Error;
}
cudaStatus = cudaMalloc((void**)&dev_b, size * sizeof(int));
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMalloc failed!");
goto Error;
}
// Copy input vectors from host memory to GPU buffers.
//复制数据a[]和b[]
cudaStatus = cudaMemcpy(dev_a, a, size * sizeof(int), cudaMemcpyHostToDevice);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMemcpy failed!");
goto Error;
}
cudaStatus = cudaMemcpy(dev_b, b, size * sizeof(int), cudaMemcpyHostToDevice);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMemcpy failed!");
goto Error;
}
// Launch a kernel on the GPU with one thread for each element.
//选择1个内核启动size个线程
addKernel<<<1, size>>>(dev_c, dev_a, dev_b);
// Check for any errors launching the kernel
cudaStatus = cudaGetLastError();
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "addKernel launch failed: %s\n", cudaGetErrorString(cudaStatus));
goto Error;
}
// cudaDeviceSynchronize waits for the kernel to finish, and returns
// any errors encountered during the launch.
cudaStatus = cudaDeviceSynchronize();
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaDeviceSynchronize returned error code %d after launching addKernel!\n", cudaStatus);
goto Error;
}
// Copy output vector from GPU buffer to host memory.
cudaStatus = cudaMemcpy(c, dev_c, size * sizeof(int), cudaMemcpyDeviceToHost);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "cudaMemcpy failed!");
goto Error;
}
Error:
cudaFree(dev_c);
cudaFree(dev_a);
cudaFree(dev_b);
return cudaStatus;
}