- 深度 Qlearning:在直播推荐系统中的应用
AGI通用人工智能之禅
程序员提升自我硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
深度Q-learning:在直播推荐系统中的应用关键词:深度Q-learning,强化学习,直播推荐系统,个性化推荐1.背景介绍1.1问题的由来随着互联网技术的飞速发展,直播平台如雨后春笋般涌现。面对海量的直播内容,用户很难快速找到自己感兴趣的内容。因此,个性化推荐系统在直播平台中扮演着越来越重要的角色。1.2研究现状目前,主流的个性化推荐算法包括协同过滤、基于内容的推荐等。这些方法在一定程度上缓
- 分享一个基于python的电子书数据采集与可视化分析 hadoop电子书数据分析与推荐系统 spark大数据毕设项目(源码、调试、LW、开题、PPT)
计算机源码社
Python项目大数据大数据pythonhadoop计算机毕业设计选题计算机毕业设计源码数据分析spark毕设
作者:计算机源码社个人简介:本人八年开发经验,擅长Java、Python、PHP、.NET、Node.js、Android、微信小程序、爬虫、大数据、机器学习等,大家有这一块的问题可以一起交流!学习资料、程序开发、技术解答、文档报告如需要源码,可以扫取文章下方二维码联系咨询Java项目微信小程序项目Android项目Python项目PHP项目ASP.NET项目Node.js项目选题推荐项目实战|p
- 大数据毕业设计hadoop+spark+hive知识图谱租房数据分析可视化大屏 租房推荐系统 58同城租房爬虫 房源推荐系统 房价预测系统 计算机毕业设计 机器学习 深度学习 人工智能
2401_84572577
程序员大数据hadoop人工智能
做了那么多年开发,自学了很多门编程语言,我很明白学习资源对于学一门新语言的重要性,这些年也收藏了不少的Python干货,对我来说这些东西确实已经用不到了,但对于准备自学Python的人来说,或许它就是一个宝藏,可以给你省去很多的时间和精力。别在网上瞎学了,我最近也做了一些资源的更新,只要你是我的粉丝,这期福利你都可拿走。我先来介绍一下这些东西怎么用,文末抱走。(1)Python所有方向的学习路线(
- 海量数据查找最大K个值:数据结构与算法的选择
星辰@Sea
数据结构Java数据结构
在处理大数据集时,经常需要找到数据集中最大的K个元素,这样的需求在很多领域都有广泛应用,例如推荐系统中寻找评分最高的K个商品、数据分析中找出最重要的K个特征、搜索引擎中找到排名前K的结果等等。面对海量数据,传统的排序方法可能不再适用,因为它们通常具有较高的时间复杂度。因此,选择合适的数据结构和算法对于提高效率至关重要。本文将详细介绍如何在海量数据集中查找最大的K个值,探讨不同的数据结构与算法选择,
- 深入掌握大模型精髓:《实战AI大模型》带你全面理解大模型开发!
努力的光头强
人工智能langchainprompttransformer深度学习
今天,人工智能技术的快速发展和广泛应用已经引起了大众的关注和兴趣,它不仅成为技术发展的核心驱动力,更是推动着社会生活的全方位变革。特别是作为AI重要分支的深度学习,通过不断刷新的表现力已引领并定义了一场科技革命。大型深度学习模型(简称AI大模型)以其强大的表征能力和卓越的性能,在自然语言处理、计算机视觉、推荐系统等领域均取得了突破性的进展。尤其随着AI大模型的广泛应用,无数领域因此受益。AI大模型
- 【ShuQiHere】探索人工智能核心:机器学习的奥秘
ShuQiHere
人工智能机器学习
【ShuQiHere】什么是机器学习?机器学习(MachineLearning,ML)是人工智能(ArtificialIntelligence,AI)中最关键的组成部分之一。它使得计算机不仅能够处理数据,还能从数据中学习,从而做出预测和决策。无论是语音识别、自动驾驶还是推荐系统,背后都依赖于机器学习模型。机器学习与传统的编程不同,它不再依赖于人类编写的固定规则,而是通过数据自我改进模型,从而更灵活
- 如何利用AI技术来提升用户的个性化体验和社区参与度?
Itfuture03
AI前沿技术人工智能
要利用AI技术提升用户的个性化体验和社区参与度,可以采取以下几种策略:个性化推荐系统:通过AI算法分析用户的行为和偏好,提供定制化的服务和内容推荐,如智能推荐活动、健康管理等,让居民感受到社区的温暖和关怀。智能助手与聊天机器人:引入AI驱动的虚拟助手,提供实时帮助、个性化建议和交互式对话,改善客户体验。自然语言处理(NLP):实现具有AI能力的NLP,创建对用户友好的应用程序,简化用户体验,如客服
- 什么是监督学习(Supervised Learning)
救救孩子把
AIAI学习
一、监督学习概述监督学习(SupervisedLearning)是一种极具威力的机器学习方法,能够训练算法以识别数据中的模式,并据此进行精准的预测或分类。借助已有的标记数据,监督学习模型学会了从输入到输出的映射关系,进而在各类实际问题中实现自动化决策。无论是医疗诊断、金融市场分析、客户行为预测,还是提升生产效率以及个性化推荐系统等领域,监督学习都彰显出巨大的潜力与价值。随着技术的持续进步,监督学习
- 2025毕业设计指南:如何用Hadoop构建超市进货推荐系统?大数据分析助力精准采购
计算机编程指导师
Java实战集Python实战集大数据实战集课程设计hadoop数据分析springbootjava进货python
✍✍计算机编程指导师⭐⭐个人介绍:自己非常喜欢研究技术问题!专业做Java、Python、小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。⛽⛽实战项目:有源码或者技术上的问题欢迎在评论区一起讨论交流!⚡⚡Java实战|SpringBoot/SSMPython实战项目|Django微信小程序/安卓实战项目大数据实战项目⚡⚡文末获取源码文章目录⚡⚡文末获取源码基于hadoop的超市进货推荐系
- DL参考资源(二)
antkillerfarm
深度学习
DL参考资源推荐系统https://zhuanlan.zhihu.com/p/26237106深度学习在推荐算法上的应用进展http://i.dataguru.cn/mportal.php?mod=view&aid=11463深度学习在推荐领域的应用https://mp.weixin.qq.com/s/hGvQvddD3i858XSK4z08Ug主要推荐系统算法总结及Youtube深度学习推荐算法
- Springboot+vue.js+协同过滤推荐+余弦相似度算法实现新闻推荐系统
计算机程序优异哥
针对海量的新闻资讯数据,如何快速的根据用户的检索需要,完成符合用户阅读需求的新闻资讯推荐?本篇文章主要采用余弦相似度及基于用户协同过滤算法实现新闻推荐,通过余弦相似度算法完成针对不同新闻数据之间的相似性计算,实现分类标签。通过协同过滤算法发现具备相似阅读习惯的用户,展开个性化推荐。本次新闻推荐系统:主要包含技术:springboot,mybatis,mysql,javascript,vue.js,
- 基于实时深度学习的推荐系统架构设计和技术演进
阿里云云栖号
云栖号技术分享架构阿里巴巴
简介:整理自5月29日阿里云开发者大会,秦江杰和刘童璇的分享,内容包括实时推荐系统的原理以及什么是实时推荐系统、整体系统的架构及如何在阿里云上面实现,以及关于深度学习的细节介绍本文整理自5月29日阿里云开发者大会,大数据与AI一体化平台分论坛,秦江杰和刘童璇带来的《基于实时深度学习的推荐系统架构设计和技术演进》。分享内容如下:实时推荐系统的原理以及什么是实时推荐系统整体系统的架构及如何在阿里云上面
- Make It a Chorus: Knowledge- and Time-aware Item Modeling for Sequential Recommendation sigir 20
农场主
机器学习
介绍的博客作者讲解摘要传统的推荐系统主要针对固有的、长期的用户偏好进行建模,而动态的用户需求也是非常重要的。通常,历史消费会影响用户对其关系项的需求。例如,用户倾向于一起购买互补产品(iPhone和AirPods),而不是替代产品(Powerbeats和AirPods),尽管替代购买的产品仍然迎合了他/她的偏好。为了更好地模拟历史序列的影响,以前的研究引入了项目关系的语义来捕捉用户的推荐需求。然而
- 【计算机毕设文章】美食信息推荐系统
xn19950718
计算机毕设文章参考案例课程设计美食数据库前端开发语言需求分析
毕业设计(论文)题目:美食信息推荐系统摘要使用旧方法对美食信息推荐系统的信息进行系统化管理已经不再让人们信赖了,把现在的网络信息技术运用在美食信息推荐系统的管理上面可以解决许多信息管理上面的难题,比如处理数据时间很长,数据存在错误不能及时纠正等问题。这次开发的美食信息推荐系统对菜谱管理、字典管理、论坛管理、论坛收藏管理、饮食资讯管理、用户管理、管理员管理等进行集中化处理。经过前面自己查阅的网络知识
- 菜谱推荐系统(前台android原生,后台java,SSH,mysql)
weixingliang_123
菜谱食谱android数据库java编程语言mysql
Android菜谱推荐系统(前台android原生,后台java,SSH,mysql)(程序代码,MySQL数据库)【运行环境】MyEclipse(后台)Eclipse(前台)JDK1.7tomcat7【技术栈】JAVA,JSP,mvc,SSH,MYSQL,HTML,CSS,JAVASCRIPT,JQUERY,android原生【项目包含内容】【下载全套源码】【项目功能介绍】
- 【机器学习】朴素贝叶斯方法的概率图表示以及贝叶斯统计中的共轭先验方法
Lossya
机器学习概率论人工智能朴素贝叶斯共轭先验
引言朴素贝叶斯方法是一种基于贝叶斯定理的简单概率模型,它假设特征之间相互独立。文章目录引言一、朴素贝叶斯方法的概率图表示1.1节点表示1.2边表示1.3无其他连接1.4总结二、朴素贝叶斯的应用场景2.1文本分类2.2推荐系统2.3医疗诊断2.4欺诈检测2.5情感分析2.6邮件过滤2.7信息检索2.8生物信息学三、朴素贝叶斯的优点四、朴素贝叶斯的局限性4.1特征独立性假设4.2敏感于输入数据的表示4
- 推荐系统统计库——systemstat
荣正青
推荐系统统计库——systemstatsystemstatRustlibraryforgettingsysteminformation|alsoonhttps://codeberg.org/valpackett/systemstat项目地址:https://gitcode.com/gh_mirrors/sy/systemstat简介systemstat是一个用Rust语言编写的强大库,它可以获取操
- ssm+vue计科毕业论文(毕设)最全开题怎么选
Ankhiu
javaweb毕设
文章目录1前言2选题汇总3详细介绍题目1:基于SSM的毕业设计管理系统题目2:基于SSM的病人跟踪治疗信息管理系统题目3:基于SSM的大学生兼职跟踪系统题目4:基于SSM的大学生企业推荐系统题目5:基于SSM的电影院在线售票系统题目6:基于SSM的房屋出租出售系统题目7:基于SSM的房屋租赁系统题目8:基于SSM的个人健康信息管理系统题目9:基于SSM的共享充电宝管理系统题目10:基于SSM的即动
- Spark MLlib模型训练—聚类算法 K-means
不二人生
SparkML实战算法spark-ml聚类
SparkMLlib模型训练—聚类算法K-meansK-means是一种经典的聚类算法,广泛应用于数据挖掘、图像处理、推荐系统等领域。它通过将数据划分为(k)个簇(clusters),使得同一簇内的数据点尽可能相似,而不同簇之间的数据点差异尽可能大。ApacheSpark提供了K-means聚类算法的高效实现,支持大规模数据的分布式计算。本文将详细介绍K-means聚类算法的原理,并结合Spark
- Django+Vue协同过滤算法图书推荐系统的设计与实现
赵广陆
projectdjangovue.js算法
目录1项目介绍2项目截图3核心代码3.1需要的环境3.2Django接口层3.3实体类3.4config.ini3.5启动类3.5Vue4数据库表设计5文档参考6计算机毕设选题推荐7源码获取1项目介绍博主个人介绍:CSDN认证博客专家,CSDN平台Java领域优质创作者,全网30w+粉丝,超300w访问量,专注于大学生项目实战开发、讲解和答疑辅导,对于专业性数据证明一切!主要项目:javaweb、
- 偏见的亮点:认知偏见如何增强推荐系统
量子位AI
人工智能机器学习
认知偏见,曾被视为人类决策过程中的缺陷,现在被认为对学习和决策有潜在的积极影响。然而,在机器学习中,尤其是在搜索和排序系统中,认知偏见的研究仍需改进。尽管有大量研究集中在探讨这些偏见如何影响模型训练和机器行为的道德性,但信息检索领域大多关注于检测偏见及其对搜索行为的影响。这在利用这些认知偏见来增强检索算法方面带来了挑战,这一领域尚未广泛探讨,对研究者而言提供了机遇和挑战。现有的一些方法,如推荐系统
- 大数据:实时大数据和离线大数据
爱写代码的July
大数据与云计算大数据
一实时大数据的介绍及应用场景实时大数据主要是对实时数据流进行处理和分析,数据在生成后几乎立即被处理,以支持快速决策。核心特性低延迟:数据在毫秒或秒级别内处理,几乎实时返回结果。连续流式处理:数据像流一样不断到达并被处理,而不是分批次处理。实时反馈:能够及时响应业务需求,如实时告警、推荐、监控等。应用场景实时推荐系统:如电商、社交媒体等,根据用户行为进行个性化推荐。实时监控:网络安全系统实时监控流量
- 计算机毕业设计hadoop+spark知识图谱房源推荐系统 房价预测系统 房源数据分析 房源可视化 房源大数据大屏 大数据毕业设计 机器学习
计算机毕业设计大全
创新点:1.支付宝沙箱支付2.支付邮箱通知(JavaMail)3.短信验证码修改密码4.知识图谱5.四种推荐算法(协同过滤基于用户、物品、SVD混合神经网络、MLP深度学习模型)6.线性回归算法预测房价7.Python爬虫采集链家数据8.AI短信识别9.百度地图API10.lstm情感分析11.spark大屏可视化开发技术:springbootvue.jspythonechartssparkmys
- 个性化推荐系统-离线召回模型验证
山水阳泉曲
python功能测试线性代数矩阵推荐算法vue
文章目录背景前端核心组件模拟操作用户历史行为后端导入依赖启动服务根据uid获取推荐列表相关推荐用户历史记录用户行为数据上报背景计划构建并优化一个覆盖前端与后端的个性化推荐系统中的离线召回模块。此模块旨在通过高效的数据处理与分析,预先筛选出用户可能感兴趣的内容或商品,为后续的实时推荐流程提供丰富且精准的候选集。为了确保实施效果与性能,我们将设计最简前端界面以直观展示召回结果,同时构建后端服务来处理大
- 基于SpringBoot+Vue协同过滤视频推荐系统
f168bc2b3926
1.技术介绍java+springboot+mysql+mybatis+Vue开发工具:eclipse或idea2.主要功能说明:1)用户注册、登录、首页、个人中心、我的收藏、视频新增、后台管理、2)管理员个人中心、用户管理、视频标签管理、视频信息管理、轮播图管理3)协同过滤算法根据用户的收藏喜好行为计算相似度,给有相近的用户行为推荐视频比如:用户1收藏了视频1、2、3用户2收藏了视频1、3、6用
- 大数据毕业设计hadoop+spark+hive微博舆情情感分析 知识图谱微博推荐系统
qq_79856539
javaweb大数据hadoop课程设计
(一)Selenium自动化Python爬虫工具采集新浪微博评论、热搜、文章等约10万条存入.csv文件作为数据集;(二)使用pandas+numpy或MapReduce对数据进行数据清洗,生成最终的.csv文件并上传到hdfs;(三)使用hive数仓技术建表建库,导入.csv数据集;(四)离线分析采用hive_sql完成,实时分析利用Spark之Scala完成;(五)统计指标使用sqoop导入m
- 大数据毕业设计天hadoop+spark+hive游戏推荐系统 游戏数据分析可视化大屏 steam游戏爬虫 游戏大数据 机器学习 知识图谱 计算机毕业设计 机器学习 深度学习 人工智能 知识图谱
2401_84159688
程序员大数据hadoop人工智能
|—||一、选题的目的和意义用户往往因为不能及时查看游戏信息而造成许多烦恼。另一方面,游戏商城平台没能进行系统的管理与维护使游戏信息没能及时的更新。而传统的游戏信息管理,采用的还是手工备案、人工查询的方式。但是随之游戏信息的增多这种管理方式的工作量不断加大,这种做法就存在费时费力、缺乏时效性、不利于调动人员的积极性等缺点。一旦网站建立好之后,一方面,用户可以在第一时间在系统里查询所需的信息,另一方
- 推荐召回中ALS(交替最小二乘法)算法验证
山水阳泉曲
算法最小二乘法机器学习推荐算法python
文章目录需求流程设计步骤1:数据准备步骤2:模型训练步骤3:评估指标选择步骤4:性能评估代码实现导入依赖Mysql获取数据分批加载到矩阵目标coo_matrixvstackbm25_weight模型训练测试评估完整代码需求为了验证推荐系统中ALS(交替最小二乘)算法的召回效果以及离线数据推荐的效果,我们需要进行一系列的实验步骤。这些步骤包括数据准备、模型训练、评估指标的选择以及最终的性能评估流程设
- 推荐系统中稀疏特征Embedding的优化表示方法
少喝冰美式
embedding算法机器学习人工智能ai大模型大语言模型
本文将介绍两个与稀疏特征Embedding相关的工作。推荐或者CTR预估任务有一个很突出的特点:存在海量稀疏特征。海量意味着数量巨大,稀疏意味着即使在很大的训练数据里,大量特征出现频次也非常低,这往往是由于引入了大量ID类特征带来的。对于DNN排序系统,是否能够找到好的特征Embedding表达方式,对于系统效果是至关重要的。虽然说,如何更好地表征稀疏特征对于模型的泛化能力至关重要,但是,关于这块
- 小琳AI课堂:推荐系统
小琳ai
小琳AI课堂人工智能
大家好,这里是小琳AI课堂!今天我们一起来探索一个让生活变得更加个性化的神奇技术——推荐系统!首先,让我们深入了解一下推荐系统的两大核心技术:协同过滤和内容基础过滤。协同过滤:这种方法通过分析用户之间的行为相似性或项目之间的相似性来进行推荐。用户基础协同过滤:找到和你相似的其他用户,然后推荐他们喜欢的东西给你。项目基础协同过滤:分析项目之间的相似度,推荐和你过去喜欢的项目相似的其他项目。内容基础过
- redis学习笔记——不仅仅是存取数据
Everyday都不同
returnSourceexpire/delincr/lpush数据库分区redis
最近项目中用到比较多redis,感觉之前对它一直局限于get/set数据的层面。其实作为一个强大的NoSql数据库产品,如果好好利用它,会带来很多意想不到的效果。(因为我搞java,所以就从jedis的角度来补充一点东西吧。PS:不一定全,只是个人理解,不喜勿喷)
1、关于JedisPool.returnSource(Jedis jeids)
这个方法是从red
- SQL性能优化-持续更新中。。。。。。
atongyeye
oraclesql
1 通过ROWID访问表--索引
你可以采用基于ROWID的访问方式情况,提高访问表的效率, , ROWID包含了表中记录的物理位置信息..ORACLE采用索引(INDEX)实现了数据和存放数据的物理位置(ROWID)之间的联系. 通常索引提供了快速访问ROWID的方法,因此那些基于索引列的查询就可以得到性能上的提高.
2 共享SQL语句--相同的sql放入缓存
3 选择最有效率的表
- [JAVA语言]JAVA虚拟机对底层硬件的操控还不完善
comsci
JAVA虚拟机
如果我们用汇编语言编写一个直接读写CPU寄存器的代码段,然后利用这个代码段去控制被操作系统屏蔽的硬件资源,这对于JVM虚拟机显然是不合法的,对操作系统来讲,这样也是不合法的,但是如果是一个工程项目的确需要这样做,合同已经签了,我们又不能够这样做,怎么办呢? 那么一个精通汇编语言的那种X客,是否在这个时候就会发生某种至关重要的作用呢?
&n
- lvs- real
男人50
LVS
#!/bin/bash
#
# Script to start LVS DR real server.
# description: LVS DR real server
#
#. /etc/rc.d/init.d/functions
VIP=10.10.6.252
host='/bin/hostname'
case "$1" in
sta
- 生成公钥和私钥
oloz
DSA安全加密
package com.msserver.core.util;
import java.security.KeyPair;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.SecureRandom;
public class SecurityUtil {
- UIView 中加入的cocos2d,背景透明
374016526
cocos2dglClearColor
要点是首先pixelFormat:kEAGLColorFormatRGBA8,必须有alpha层才能透明。然后view设置为透明glView.opaque = NO;[director setOpenGLView:glView];[self.viewController.view setBackgroundColor:[UIColor clearColor]];[self.viewControll
- mysql常用命令
香水浓
mysql
连接数据库
mysql -u troy -ptroy
备份表
mysqldump -u troy -ptroy mm_database mm_user_tbl > user.sql
恢复表(与恢复数据库命令相同)
mysql -u troy -ptroy mm_database < user.sql
备份数据库
mysqldump -u troy -ptroy
- 我的架构经验系列文章 - 后端架构 - 系统层面
agevs
JavaScriptjquerycsshtml5
系统层面:
高可用性
所谓高可用性也就是通过避免单独故障加上快速故障转移实现一旦某台物理服务器出现故障能实现故障快速恢复。一般来说,可以采用两种方式,如果可以做业务可以做负载均衡则通过负载均衡实现集群,然后针对每一台服务器进行监控,一旦发生故障则从集群中移除;如果业务只能有单点入口那么可以通过实现Standby机加上虚拟IP机制,实现Active机在出现故障之后虚拟IP转移到Standby的快速
- 利用ant进行远程tomcat部署
aijuans
tomcat
在javaEE项目中,需要将工程部署到远程服务器上,如果部署的频率比较高,手动部署的方式就比较麻烦,可以利用Ant工具实现快捷的部署。这篇博文详细介绍了ant配置的步骤(http://www.cnblogs.com/GloriousOnion/archive/2012/12/18/2822817.html),但是在tomcat7以上不适用,需要修改配置,具体如下:
1.配置tomcat的用户角色
- 获取复利总收入
baalwolf
获取
public static void main(String args[]){
int money=200;
int year=1;
double rate=0.1;
&
- eclipse.ini解释
BigBird2012
eclipse
大多数java开发者使用的都是eclipse,今天感兴趣去eclipse官网搜了一下eclipse.ini的配置,供大家参考,我会把关键的部分给大家用中文解释一下。还是推荐有问题不会直接搜谷歌,看官方文档,这样我们会知道问题的真面目是什么,对问题也有一个全面清晰的认识。
Overview
1、Eclipse.ini的作用
Eclipse startup is controlled by th
- AngularJS实现分页功能
bijian1013
JavaScriptAngularJS分页
对于大多数web应用来说显示项目列表是一种很常见的任务。通常情况下,我们的数据会比较多,无法很好地显示在单个页面中。在这种情况下,我们需要把数据以页的方式来展示,同时带有转到上一页和下一页的功能。既然在整个应用中这是一种很常见的需求,那么把这一功能抽象成一个通用的、可复用的分页(Paginator)服务是很有意义的。
&nbs
- [Maven学习笔记三]Maven archetype
bit1129
ArcheType
archetype的英文意思是原型,Maven archetype表示创建Maven模块的模版,比如创建web项目,创建Spring项目等等.
mvn archetype提供了一种命令行交互式创建Maven项目或者模块的方式,
mvn archetype
1.在LearnMaven-ch03目录下,执行命令mvn archetype:gener
- 【Java命令三】jps
bit1129
Java命令
jps很简单,用于显示当前运行的Java进程,也可以连接到远程服务器去查看
[hadoop@hadoop bin]$ jps -help
usage: jps [-help]
jps [-q] [-mlvV] [<hostid>]
Definitions:
<hostid>: <hostname>[:
- ZABBIX2.2 2.4 等各版本之间的兼容性
ronin47
zabbix更新很快,从2009年到现在已经更新多个版本,为了使用更多zabbix的新特性,随之而来的便是升级版本,zabbix版本兼容性是必须优先考虑的一点 客户端AGENT兼容
zabbix1.x到zabbix2.x的所有agent都兼容zabbix server2.4:如果你升级zabbix server,客户端是可以不做任何改变,除非你想使用agent的一些新特性。 Zabbix代理(p
- unity 3d还是cocos2dx哪个适合游戏?
brotherlamp
unity自学unity教程unity视频unity资料unity
unity 3d还是cocos2dx哪个适合游戏?
问:unity 3d还是cocos2dx哪个适合游戏?
答:首先目前来看unity视频教程因为是3d引擎,目前对2d支持并不完善,unity 3d 目前做2d普遍两种思路,一种是正交相机,3d画面2d视角,另一种是通过一些插件,动态创建mesh来绘制图形单元目前用的较多的是2d toolkit,ex2d,smooth moves,sm2,
- 百度笔试题:一个已经排序好的很大的数组,现在给它划分成m段,每段长度不定,段长最长为k,然后段内打乱顺序,请设计一个算法对其进行重新排序
bylijinnan
java算法面试百度招聘
import java.util.Arrays;
/**
* 最早是在陈利人老师的微博看到这道题:
* #面试题#An array with n elements which is K most sorted,就是每个element的初始位置和它最终的排序后的位置的距离不超过常数K
* 设计一个排序算法。It should be faster than O(n*lgn)。
- 获取checkbox复选框的值
chiangfai
checkbox
<title>CheckBox</title>
<script type = "text/javascript">
doGetVal: function doGetVal()
{
//var fruitName = document.getElementById("apple").value;//根据
- MySQLdb用户指南
chenchao051
mysqldb
原网页被墙,放这里备用。 MySQLdb User's Guide
Contents
Introduction
Installation
_mysql
MySQL C API translation
MySQL C API function mapping
Some _mysql examples
MySQLdb
- HIVE 窗口及分析函数
daizj
hive窗口函数分析函数
窗口函数应用场景:
(1)用于分区排序
(2)动态Group By
(3)Top N
(4)累计计算
(5)层次查询
一、分析函数
用于等级、百分点、n分片等。
函数 说明
RANK() &nbs
- PHP ZipArchive 实现压缩解压Zip文件
dcj3sjt126com
PHPzip
PHP ZipArchive 是PHP自带的扩展类,可以轻松实现ZIP文件的压缩和解压,使用前首先要确保PHP ZIP 扩展已经开启,具体开启方法就不说了,不同的平台开启PHP扩增的方法网上都有,如有疑问欢迎交流。这里整理一下常用的示例供参考。
一、解压缩zip文件 01 02 03 04 05 06 07 08 09 10 11
- 精彩英语贺词
dcj3sjt126com
英语
I'm always here
我会一直在这里支持你
&nb
- 基于Java注解的Spring的IoC功能
e200702084
javaspringbeanIOCOffice
- java模拟post请求
geeksun
java
一般API接收客户端(比如网页、APP或其他应用服务)的请求,但在测试时需要模拟来自外界的请求,经探索,使用HttpComponentshttpClient可模拟Post提交请求。 此处用HttpComponents的httpclient来完成使命。
import org.apache.http.HttpEntity ;
import org.apache.http.HttpRespon
- Swift语法之 ---- ?和!区别
hongtoushizi
?swift!
转载自: http://blog.sina.com.cn/s/blog_71715bf80102ux3v.html
Swift语言使用var定义变量,但和别的语言不同,Swift里不会自动给变量赋初始值,也就是说变量不会有默认值,所以要求使用变量之前必须要对其初始化。如果在使用变量之前不进行初始化就会报错:
var stringValue : String
//
- centos7安装jdk1.7
jisonami
jdkcentos
安装JDK1.7
步骤1、解压tar包在当前目录
[root@localhost usr]#tar -xzvf jdk-7u75-linux-x64.tar.gz
步骤2:配置环境变量
在etc/profile文件下添加
export JAVA_HOME=/usr/java/jdk1.7.0_75
export CLASSPATH=/usr/java/jdk1.7.0_75/lib
- 数据源架构模式之数据映射器
home198979
PHP架构数据映射器datamapper
前面分别介绍了数据源架构模式之表数据入口、数据源架构模式之行和数据入口数据源架构模式之活动记录,相较于这三种数据源架构模式,数据映射器显得更加“高大上”。
一、概念
数据映射器(Data Mapper):在保持对象和数据库(以及映射器本身)彼此独立的情况下,在二者之间移动数据的一个映射器层。概念永远都是抽象的,简单的说,数据映射器就是一个负责将数据映射到对象的类数据。
&nb
- 在Python中使用MYSQL
pda158
mysqlpython
缘由 近期在折腾一个小东西须要抓取网上的页面。然后进行解析。将结果放到
数据库中。 了解到
Python在这方面有优势,便选用之。 由于我有台
server上面安装有
mysql,自然使用之。在进行数据库的这个操作过程中遇到了不少问题,这里
记录一下,大家共勉。
python中mysql的调用
百度之后能够通过MySQLdb进行数据库操作。
- 单例模式
hxl1988_0311
java单例设计模式单件
package com.sosop.designpattern.singleton;
/*
* 单件模式:保证一个类必须只有一个实例,并提供全局的访问点
*
* 所以单例模式必须有私有的构造器,没有私有构造器根本不用谈单件
*
* 必须考虑到并发情况下创建了多个实例对象
* */
/**
* 虽然有锁,但是只在第一次创建对象的时候加锁,并发时不会存在效率
- 27种迹象显示你应该辞掉程序员的工作
vipshichg
工作
1、你仍然在等待老板在2010年答应的要提拔你的暗示。 2、你的上级近10年没有开发过任何代码。 3、老板假装懂你说的这些技术,但实际上他完全不知道你在说什么。 4、你干完的项目6个月后才部署到现场服务器上。 5、时不时的,老板在检查你刚刚完成的工作时,要求按新想法重新开发。 6、而最终这个软件只有12个用户。 7、时间全浪费在办公室政治中,而不是用在开发好的软件上。 8、部署前5分钟才开始测试。