转载自:https://www.e-learn.cn/content/qita/814071
from datetime import datetime
import os
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from six.moves import xrange
data = np.load('final37.npy')
data = data[:,:,0:60]
#显示原始数据图像
def Show_images(data,show_nums,save=False):
index = 0
for n in range(show_nums):
show_images = data[index:index+100]
show_images = show_images.reshape(100,3,60,1)
r,c = 10,10
fig,axs = plt.subplots(r,c)
cnt = 0
for i in range(r):
for j in range(c):
xy = show_images[cnt]
for k in range(len(xy)):
x = xy[k][0:30]
y = xy[k][30:60]
if k == 0 :
axs[i,j].plot(x,y,color='blue',linewidth=2)
if k == 1:
axs[i,j].plot(x,y,color='red',linewidth=2)
if k == 2:
axs[i,j].plot(x,y,color='green',linewidth=2)
axs[i,j].axis('off')
cnt += 1
index += 100
if save:
if not os.path.exists('This_epoch'):
os.makedirs('This_epoch')
fig.savefig('This_epoch/%d.jpg' % n)
plt.close()
else:
plt.show()
def Save_genImages(gen, epoch):
r,c = 10,10
fig,axs = plt.subplots(r,c)
cnt = 0
for i in range(r):
for j in range(c):
xy = gen[cnt]
for k in range(len(xy)):
x = xy[k][0:30]
y = xy[k][30:60]
if k == 0:
axs[i,j].plot(x,y,color='blue')
if k == 1:
axs[i,j].plot(x,y,color='red')
if k == 2:
axs[i,j].plot(x,y,color='green')
axs[i,j].axis('off')
cnt += 1
if not os.path.exists('gen_img1'):
os.makedirs('gen_img1')
fig.savefig('gen_img1/%d.jpg' % epoch)
plt.close()
def Save_lossValue(epoch,iters,d_loss,g_loss):
with open('losst.txt','a') as f:
f.write("第%d个epoch,第%d个batch , d_loss: %.8f, g_loss: %.8f"%(epoch, iters, d_loss, g_loss)+'\n')
def plot_loss(loss):
fig,ax = plt.subplots(figsize=(20,7))
losses = np.array(loss)
plt.plot(losses.T[0], label="Discriminator Loss")
plt.plot(losses.T[1], label="Generator Loss")
plt.title("Training Losses")
plt.legend()
plt.savefig('loss.jpg')
plt.show()
#定义Relu激活函数
def Relu(name, tensor):
return tf.nn.relu(tensor,name)
#定义LeakyRelu激活函数
def LeakyRelu(name, x, leak=0.2):
return tf.maximum(x,leak*x,name=name)
#定义全连接层
def Fully_connected(name, value, output_shape):
with tf.variable_scope(name,reuse=None) as scope:
shape = value.get_shape().as_list()
w = tf.get_variable('w',[shape[1],output_shape],dtype=tf.float32,
initializer=tf.random_normal_initializer(stddev=0.01))
b = tf.get_variable('b',[output_shape],dtype=tf.float32,initializer=tf.constant_initializer(0.0))
return tf.matmul(value,w) + b
#定义一维卷积
def Conv1d(name, tensor, ksize, out_dim, stride, padding, stddev=0.01):
with tf.variable_scope(name):
w = tf.get_variable('w',[ksize,tensor.get_shape()[-1],out_dim],dtype=tf.float32,
initializer=tf.random_normal_initializer(stddev=stddev))
var = tf.nn.conv1d(tensor,w,stride,padding=padding)
b = tf.get_variable('b',[out_dim],'float32',initializer=tf.constant_initializer(0.01))
return tf.nn.bias_add(var,b)
#定义二维卷积
def Conv2d(name, tensor, filter_size1 ,filter_size2, out_dim, stride1, stride2, padding, stddev=0.01):
with tf.variable_scope(name):
w = tf.get_variable('w',[filter_size1, filter_size2, tensor.get_shape()[-1], out_dim], dtype=tf.float32,
initializer=tf.random_normal_initializer(stddev=stddev))
var = tf.nn.conv2d(tensor, w, [1, stride1, stride2, 1], padding=padding)
b = tf.get_variable('b',[out_dim], 'float32', initializer=tf.constant_initializer(0.01))
return tf.nn.bias_add(var,b)
#定义二维反卷积
def Deconv2d(name, tensor, filter_size1, filter_size2, outshape, stride1, stride2, padding, stddev=0.01):
with tf.variable_scope(name):
w = tf.get_variable('w', [filter_size1, filter_size2, outshape[-1], tensor.get_shape()[-1]], dtype=tf.float32,
initializer=tf.random_normal_initializer(stddev=stddev))
var = tf.nn.conv2d_transpose(tensor, w, outshape, strides=[1,stride1, stride2, 1], padding=padding)
b = tf.get_variable('b', [outshape[-1]],'float32', initializer=tf.constant_initializer(0.01))
return tf.nn.bias_add(var,b)
def Get_inputs(real_size,noise_size):
real_img = tf.placeholder(tf.float32, [None, real_size], name='real_img')
noise_img = tf.placeholder(tf.float32, [None, noise_size], name='noise_img')
return real_img, noise_img
def Generator(noise_img, reuse=False, alpha=0.01):
with tf.variable_scope('generator',reuse=reuse):
# print(noise_img.shape)
output = tf.layers.dense(noise_img,128)
# print(output.shape)
output = tf.maximum(alpha * output,output)
output = tf.layers.batch_normalization(output,momentum=0.8,training=True)
output = tf.layers.dropout(output, rate=0.25)
output = tf.layers.dense(output,512)
output = tf.maximum(alpha * output,output)
output = tf.layers.batch_normalization(output,momentum=0.8,training=True)
output = tf.layers.dropout(output,rate=0.25)
output = tf.layers.dense(output,180)
output = tf.tanh(output)
return output
def Discriminator(img,reuse=False,alpha=0.01):
with tf.variable_scope("discriminator", reuse=reuse):
print(img.shape)
output = tf.layers.dense(img,512)
output = tf.maximum(alpha * output, output)
output = tf.layers.dense(output,128)
output = tf.maximum(alpha * output, output)
output = tf.layers.dense(output,1)
return output
mode = 'gan' #gan, wgan, wgan-gp
batch_size = 100
epochs = 1
n_sample = 100
learning_rate = 0.0002
lamda = 10
img_size = 180
noise_size = 100
tf.reset_default_graph()
real_img, noise_img = Get_inputs(img_size,noise_size)#feed于此
real_data = real_img
fake_data = Generator(noise_img)
disc_real = Discriminator(real_data,reuse=False)
disc_fake = Discriminator(fake_data,reuse=True)
#生成器和判别器中的tensor
train_vars = tf.trainable_variables()
g_vars = [var for var in train_vars if var.name.startswith("generator")]
d_vars = [var for var in train_vars if var.name.startswith("discriminator")]
#普通的GAN
if mode == 'gan':
gen_cost = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=disc_fake,labels=tf.ones_like(disc_fake))) #生成器loss
disc_cost = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=disc_fake,labels=tf.zeros_like(disc_fake)))
disc_cost += tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=disc_real,labels=tf.ones_like(disc_real)))
disc_cost /= 2. #判别器loss
#优化器
gen_train_op = tf.train.AdamOptimizer(learning_rate=2e-4, beta1=0.5).minimize(gen_cost,var_list=g_vars)
disc_train_op = tf.train.AdamOptimizer(learning_rate=2e-4,beta1=0.5).minimize(disc_cost,var_list=d_vars)
clip_disc_weights = None
#wgan
elif mode == 'wgan':
gen_cost = -tf.reduce_mean(disc_fake) #生成器loss
disc_cost = tf.reduce_mean(disc_fake) - tf.reduce_mean(disc_real) #判别器loss
#优化器
gen_train_op = tf.train.RMSPropOptimizer(learning_rate=5e-5).minimize(gen_cost,var_list=g_vars)
disc_train_op = tf.train.RMSPropOptimizer(learning_rate=5e-5).minimize(disc_cost,var_list=d_vars)
clip_ops = []
#将判别器权重截断到[-0.01,0.01]
for var in train_vars:
if var.name.startswith("discriminator"):
clip_bounds = [-0.01, 0.01]
clip_ops.append(tf.assign(var,tf.clip_by_value(var,clip_bounds[0],clip_bounds[1])))
clip_disc_weights = tf.group(*clip_ops)
elif mode == 'wgan-gp':
gen_cost = -tf.reduce_mean(disc_fake) #生成器loss
disc_cost = tf.reduce_mean(disc_fake) - tf.reduce_mean(disc_real) #判别器loss
#梯度惩罚
alpha = tf.random_uniform(shape=[batch_size,1],minval=0.,maxval=1.)
interpolates = alpha*fake_data + (1-alpha)*real_data
gradients = tf.gradients(Discriminator(interpolates,reuse=True),[interpolates])[0]
slopes = tf.sqrt(tf.reduce_sum(tf.square(gradients),reduction_indices=[1]))
gradient_penalty = tf.reduce_mean((slopes-1.)**2)
disc_cost += lamda * gradient_penalty
clip_disc_weights = None
#优化器
gen_train_op = tf.train.AdamOptimizer(learning_rate=1e-4,beta1=0.5,beta2=0.9).minimize(gen_cost,var_list=g_vars)
disc_train_op = tf.train.AdamOptimizer(learning_rate=1e-4,beta1=0.5,beta2=0.9).minimize(disc_cost,var_list=d_vars)
saver = tf.train.Saver()
def Train():
losses = []
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for e in range(epochs):
for i in xrange(len(data)//batch_size):
batch_images = data[i*batch_size:(i+1)*batch_size]
batch_images = batch_images.reshape(batch_size,180)
batch_images = batch_images*2 -1
batch_noise = np.random.uniform(-1,1,size=(batch_size,noise_size))
if mode == 'gan': #普通的gan,判别器,生成器各训练一次
disc_iters = 2
else: #wgan和wgan-gp,判别器训练多次,生成器训练一次
disc_iters = 2
for x in range(0,disc_iters):
_,d_loss = sess.run([disc_train_op,disc_cost],feed_dict={real_data:batch_images,noise_img:batch_noise})
if clip_disc_weights is not None:
_ = sess.run(clip_disc_weights)
_,g_loss = sess.run([gen_train_op,gen_cost],feed_dict={noise_img:batch_noise})
Save_lossValue(e,i,d_loss,g_loss)
print("第%d个epoch,第%d个batch , d_loss: %.8f, g_loss: %.8f"%(e, i, d_loss, g_loss))
losses.append((d_loss,g_loss))
sample_noise = np.random.uniform(-1,1,size=(100,100))
gen_samples = sess.run(Generator(noise_img,reuse=True),feed_dict={noise_img:sample_noise})
print(gen_samples.shape)
saver.save(sess,'checkpoints/test.ckpt')
if e % 1 == 0:
gen = gen_samples.reshape(100,3,60,1)
Save_genImages(gen, e)
plot_loss(losses)
def Test():
saver = tf.train.Saver(var_list=g_vars)
with tf.Session() as sess:
saver.restore(sess,tf.train.latest_checkpoint("checkpoints"))
# saver.restore(sess,'checkppoints/b.ckpt')
sample_noise = np.random.uniform(-1, 1, size=(10000,noise_size))
gen_samples = sess.run(Generator(noise_img,reuse=True),feed_dict={noise_img:sample_noise})
gen_images = (gen_samples+1)/2
show_num = len(gen_images)//100
Show_images(gen_images,show_num,save=True)
if __name__ == '__main__':
Train()
#Test()