MobileNetV2:
《Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation》
于2018年1月公开在arXiv(美[ˈɑ:rkaɪv]) :https://arxiv.org/abs/1801.04381
MobileNetV2是对MobileNetV1的改进,同样是一个轻量化卷积神经网络。
1. Inverted residuals,通常的residuals block是先经过一个1*1的Conv layer,把feature map的通道数“压”下来,再经过3*3 Conv layer,最后经过一个1*1 的Conv layer,将feature map 通道数再“扩张”回去。即先“压缩”,最后“扩张”回去。
而 inverted residuals就是 先“扩张”,最后“压缩”。为什么这么做呢?请往下看。
2.Linear bottlenecks,为了避免Relu对特征的破坏,在residual block的Eltwise sum之前的那个 1*1 Conv 不再采用Relu,为什么?请往下看。
创新点全写在论文标题上了!
由于才疏学浅,对本论文理论部分不太明白,所以选取文中重要结论来说明MobileNet-V2。
先看看MobileNetV2 和 V1之间有啥不同
(原图链接)
主要是两点:
再看看MobileNetV2的block 与ResNet 的block:
(原图链接)
主要不同之处就在于,ResNet是:压缩”→“卷积提特征”→“扩张”,MobileNetV2则是Inverted residuals,即:“扩张”→“卷积提特征”→ “压缩”
MobileNet-V1 最大的特点就是采用depth-wise separable convolution来减少运算量以及参数量,而在网络结构上,没有采用shortcut的方式。
Resnet及Densenet等一系列采用shortcut的网络的成功,表明了shortcut是个非常好的东西,于是MobileNet-V2就将这个好东西拿来用。
拿来主义,最重要的就是要结合自身的特点,MobileNet的特点就是depth-wise separable convolution,但是直接把depth-wise separable convolution应用到 residual block中,会碰到如下问题:
1.DWConv layer层提取得到的特征受限于输入的通道数,若是采用以往的residual block,先“压缩”,再卷积提特征,那么DWConv layer可提取得特征就太少了,因此一开始不“压缩”,MobileNetV2反其道而行,一开始先“扩张”,本文实验“扩张”倍数为6。 通常residual block里面是 “压缩”→“卷积提特征”→“扩张”,MobileNetV2就变成了 “扩张”→“卷积提特征”→ “压缩”,因此称为Inverted residuals
2.当采用“扩张”→“卷积提特征”→ “压缩”时,在“压缩”之后会碰到一个问题,那就是Relu会破坏特征。为什么这里的Relu会破坏特征呢?这得从Relu的性质说起,Relu对于负的输入,输出全为零;而本来特征就已经被“压缩”,再经过Relu的话,又要“损失”一部分特征,因此这里不采用Relu,实验结果表明这样做是正确的,这就称为Linear bottlenecks
附赠苏师兄的prototxt:
https://github.com/suzhenghang/MobileNetv2/tree/master/.gitignore
另外一位朋友的prototxt:
https://github.com/austingg/MobileNet-v2-caffe
其中:t表示“扩张”倍数,c表示输出通道数,n表示重复次数,s表示步长stride。
先说两点有误之处吧:
1. 第五行,也就是第7~10个bottleneck,stride=2,分辨率应该从28降低到14;如果不是分辨率出错,那就应该是stride=1;
2. 文中提到共计采用19个bottleneck,但是这里只有17个。
Conv2d 和avgpool和传统CNN里的操作一样;最大的特点是bottleneck,一个bottleneck由如下三个部分构成:
这就是之前提到的inverted residuals结构,一个inverted residuals结构的Multiply Add=
h*w*d’ * 1*1*td’ +
h*w*td’ * k*k*1 +
h*w*t d’ * 1*1*d” =
h*w*d’*t(d’+ k*k + d”)
特别的,针对stride=1 和stride=2,在block上有稍微不同,主要是为了与shortcut的维度匹配,因此,stride=2时,不采用shortcut。 具体如下图:
可以发现,除了最后的avgpool,整个网络并没有采用pooling进行下采样,而是利用stride=2来下采样,此法已经成为主流,不知道是否pooling层对速度有影响,因此舍弃pooling层?是否有朋友知道那篇论文里提到这个操作?
看看MobileNet-V2 分类时,inference速度:
这是在手机的CPU上跑出来的结果(Google pixel 1 for TF-Lite)
同时还进行了目标检测和图像分割实验,效果都不错,详细请看原文。