深度学习笔记5torch实现mnist手写数字识别

转自:

http://www.aichengxu.com/view/2464034

本节代码地址:

https://github.com/vic-w/torch-practice/tree/master/mnist

根据个人理解,注释了一些原作者没有注释的代码

luarocks install mnist

require 'torch'
require 'nn'
require 'optim'
--require 'cunn'
--require 'cutorch'
mnist = require 'mnist'
--mnist中包含我们需要的训练数据和测试数据
fullset = mnist.traindataset()
testset = mnist.testdataset()

trainset = {
    size = 50000,
    data = fullset.data[{{1,50000}}]:double(),
    label = fullset.label[{{1,50000}}]
}

validationset = {
    size = 10000,
    data = fullset.data[{{50001,60000}}]:double(),
    label = fullset.label[{{50001,60000}}]
}
--数据减去他们的均值
trainset.data = trainset.data - trainset.data:mean()
validationset.data = validationset.data - validationset.data:mean()
model = nn.Sequential()
model:add(nn.Reshape(1, 28, 28))
model:add(nn.MulConstant(1/256.0*3.2))
model:add(nn.SpatialConvolutionMM(1, 20, 5, 5, 1, 1, 0, 0))
model:add(nn.SpatialMaxPooling(2, 2 , 2, 2, 0, 0))
model:add(nn.SpatialConvolutionMM(20, 50, 5, 5, 1, 1, 0, 0))
model:add(nn.SpatialMaxPooling(2, 2 , 2, 2, 0, 0))
model:add(nn.Reshape(4*4*50))
model:add(nn.Linear(4*4*50, 500))
model:add(nn.ReLU())
model:add(nn.Linear(500, 10))
model:add(nn.LogSoftMax())

model = require('weight-init')(model, 'xavier')

criterion = nn.ClassNLLCriterion()

--model = model:cuda()
--criterion = criterion:cuda()
--trainset.data = trainset.data:cuda()
--trainset.label = trainset.label:cuda()
--validationset.data = validationset.data:cuda()
--validationset.label = validationset.label:cuda()

sgd_params = {
   learningRate = 1e-2,
   learningRateDecay = 1e-4,
   weightDecay = 1e-3,
   momentum = 1e-4
}
--获取模型的初始参数,x是权值,dl_dx是梯度
x, dl_dx = model:getParameters()

step = function(batch_size)
    local current_loss = 0
    local count = 0
    local shuffle = torch.randperm(trainset.size)--随机下标,用来打乱训练数据
    batch_size = batch_size or 200--批处理数目为200
    for t = 1,trainset.size,batch_size do
        -- setup inputs and targets for this mini-batch
        local size = math.min(t + batch_size - 1, trainset.size) - t
        local inputs = torch.Tensor(size, 28, 28)--:cuda()
        local targets = torch.Tensor(size)--:cuda()
        for i = 1,size do
            local input = trainset.data[shuffle[i+t]]
            local target = trainset.label[shuffle[i+t]]
            -- if target == 0 then target = 10 end
            inputs[i] = input--将随机打乱位置的数据集加入到训练输入和输出集
            targets[i] = target
        end
        targets:add(1)
        local feval = function(x_new)--这个函数是个迭代训练函数
            -- reset data
            if x ~= x_new then x:copy(x_new) end
            dl_dx:zero()--梯度归零,类似这个函数zeroGradParameters()  

            -- perform mini-batch gradient descent
            local loss = criterion:forward(model:forward(inputs), targets)--两次前向计算,一次是带入模型计算输出,一次是用输出和目标输出求误差
            model:backward(inputs, criterion:backward(model.output, targets))--两次后向计算,一次是带入误差函数求梯度,一次是用梯度和输入数据更新权值

            return loss, dl_dx--返回误差和梯度
        end

        _, fs = optim.sgd(feval, x, sgd_params)--优化函数

        -- fs is a table containing value of the loss function
        -- (just 1 value for the SGD optimization)
        count = count + 1
        current_loss = current_loss + fs[1]
    end

    -- normalize loss
    return current_loss / count
end

eval = function(dataset, batch_size)
    local count = 0
    batch_size = batch_size or 200
    
    for i = 1,dataset.size,batch_size do
        local size = math.min(i + batch_size - 1, dataset.size) - i
        local inputs = dataset.data[{{i,i+size-1}}]--:cuda()
        local targets = dataset.label[{{i,i+size-1}}]:long()--:cuda()
        local outputs = model:forward(inputs)--用训练好的模型计算输出
        local _, indices = torch.max(outputs, 2)
        indices:add(-1)
        local guessed_right = indices:eq(targets):sum()--计算命中数目
        count = count + guessed_right
    end

    return count / dataset.size
end

max_iters = 30

do
    local last_accuracy = 0
    local decreasing = 0
    local threshold = 1 -- how many deacreasing epochs we allow
    for i = 1,max_iters do
        local loss = step()
        print(string.format('Epoch: %d Current loss: %4f', i, loss))
        local accuracy = eval(validationset)
        print(string.format('Accuracy on the validation set: %4f', accuracy))
        if accuracy < last_accuracy then
            if decreasing > threshold then break end
            decreasing = decreasing + 1
        else
            decreasing = 0
        end
        last_accuracy = accuracy
    end
end

testset.data = testset.data:double()
eval(testset)




你可能感兴趣的:(机器学习)