HBase的名字的来源于Hadoop database,即hadoop数据库,不同于一般的关系数据库,它是非结构化数据存储的数据库,而且它是基于列的而不是基于行的模式。
HBase是一个分布式的、面向列的、基于Google Bigtable的开源实现。
利用Hadoop HDFS作为其文件存储系统,
利用Hadoop MapReduce来处理HBase中的海量数据,
利用Zookeeper作为协同服务。
HBase以表的形式存储数据。表有行和列组成。列划分为若干个列族/列簇(column family),每个列族/列簇下面可以有多个普通列。
HBase是用表来存储数据的。
namespace命名空间指对一组表的逻辑分组,类似RDBMS中的database,方便对表在业务上划分。
HBase系统默认定义了两个缺省的namespace:
行键,每一行的主键列,每行的行键要唯一,行键的值为任意字符串(最大长度是 64KB,实际应用中长度一般为 10-100bytes),在HBase内部,rowKey保存为字节数组byte[]
。
行的一次读写是原子操作 (不论一次读写多少列)
Table在行的方向上分割为多个Region。
Region是按大小分割的,每个表开始只有一个region,随着数据的增多,region不断增大,当增大到一个阀值的时候,region就会等分为两个新的region,之后会有越来越多的region。
Region是HBase中分布式存储和负载均衡的最小单元。不同的Region分布到不同的RegionServer上。
Region由一个或者多个Store组成, 每个Store保存一个column family, 每个Store又由一个MemStore(存储在内存中)和0到多个StoreFile(存储在HDFS上)组成
列族是每个子列的父级,每个子列都属于一个列族,一个列族包含一个或者多个相关列,创建表的时候需要指定列族,而列不需要必须指定。通过“列族名:列名”来表示某个具体的子列。
HBase中的Schema就是 TableName + Column Family Name
就是列族下的每个子列名称,或者称为相关列,或者称为限定符,只是翻译不同。
通过columnFamily:column
来定位某个子列。
我们外观看到的每个单元格其实都对应着多个存储单元,默认情况下一个单元格对应着一个存储单元,一个存储单元可以存储一份数据,如果一个单元格有多个存储单元就表示一个单元格可以存储多个值。可以通过version来设置存储单元个数。可以通过
rowKey + columnFamily + column + timestamp
来唯一确定一个存储单元。cell中的数据是没有类型的,全部是字节码形式存贮。
hbase按照时间戳降序排列各时间版本,其他映射建按照升序排序。
每个cell都保存着同一份数据的多个版本。版本通过时间戳来索引。时间戳的类型是 64位整型。时间戳可以由hbase(在数据写入时自动 )赋值,此时时间戳是精确到毫秒的当前系统时间。时间戳也可以由客户显式赋值。如果应用程序要避免数据版本冲突,就必须自己生成具有唯一性的时间戳。每个cell中,不同版本的数据按照时间倒序排序,即最新的数据排在最前面。
为了避免数据存在过多版本造成的的管理 (包括存贮和索引)负担,hbase提供了两种数据版本回收方式。一是保存数据的最后n个版本,二是保存最近一段时间内的版本(比如最近七天)。用户可以针对每个列族进行设置。
命名 | 描述 | 语法 |
---|---|---|
help ‘命名名’ | 查看命令的使用描述 | help ‘命令名’ |
whoami | 我是谁 | whoami |
version | 返回hbase版本信息 | version |
status | 返回hbase集群的状态信息 | status |
table_help | 查看如何操作表 | table_help |
create | 创建表 | create ‘表名’, ‘列族名1’, ‘列族名2’, ‘列族名N’ |
alter | 修改列族 | 添加一个列族:alter ‘表名’, ‘列族名’ 删除列族:alter ‘表名’, {NAME=> ‘列族名’, METHOD=> ‘delete’} |
describe | 显示表相关的详细信息 | describe ‘表名’ |
list | 列出hbase中存在的所有表 | list |
exists | 测试表是否存在 | exists ‘表名’ |
put | 添加或修改的表的值 | put ‘表名’, ‘行键’, ‘列族名’, ‘列值’ put ‘表名’, ‘行键’, ‘列族名:列名’, ‘列值’ |
scan | 通过对表的扫描来获取对用的值 | scan ‘表名’ 扫描某个列族: scan ‘表名’, {COLUMN=>‘列族名’} 扫描某个列族的某个列: scan ‘表名’, {COLUMN=>‘列族名:列名’} 查询同一个列族的多个列: scan ‘表名’, {COLUMNS => [ ‘列族名1:列名1’, ‘列族名1:列名2’, …]} |
get | 获取行或单元(cell)的值 | get ‘表名’, ‘行键’ get ‘表名’, ‘行键’, ‘列族名’ |
count | 统计表中行的数量 | count ‘表名’ |
incr | 增加指定表行或列的值 | incr ‘表名’, ‘行键’, ‘列族:列名’, 步长值 |
get_counter | 获取计数器 | get_counter ‘表名’, ‘行键’, ‘列族:列名’ |
delete | 删除指定对象的值(可以为表,行,列对应的值,另外也可以指定时间戳的值) | 删除列族的某个列: delete ‘表名’, ‘行键’, ‘列族名:列名’ |
deleteall | 删除指定行的所有元素值 | deleteall ‘表名’, ‘行键’ |
truncate | 重新创建指定表 | truncate ‘表名’ |
enable | 使表有效 | enable ‘表名’ |
is_enabled | 是否启用 | is_enabled ‘表名’ |
disable | 使表无效 | disable ‘表名’ |
is_disabled | 是否无效 | is_disabled ‘表名’ |
drop | 删除表 | drop的表必须是disable的 disable ‘表名’ drop ‘表名’ |
shutdown | 关闭hbase集群(与exit不同) | |
tools | 列出hbase所支持的工具 | |
exit | 退出hbase shell |
HBase Shell 是官方提供的一组命令,用于操作HBase。如果配置了HBase的环境变量了,就可以知己在命令行中输入hbase shell 命令进入命令行。
hbase shell
可以通过 help '命名名称'
来查看命令行的具体使用,包括命令的作用和用法。
通过help ‘hbase’ 命名来查看hbase shell 支持的所有命令,hbase将命令进行分组,其中ddl、dml使用较多。
可以为 ‘summary’, ‘simple’, ‘detailed’, or ‘replication’. 默认为 ‘summary’
hbase> status
hbase> status 'simple'
hbase> status 'summary'
hbase> status 'detailed'
hbase> status 'replication'
hbase> status 'replication', 'source'
hbase> status 'replication', 'sink'
exit
注意:创建表时只需要指定列族名称,不需要指定列名。
# 语法
create '表名', {NAME => '列族名1'}, {NAME => '列族名2'}, {NAME => '列族名3'}
# 此种方式是上上面的简写方式,使用上面方式可以为列族指定更多的属性,如VERSIONS、TTL、BLOCKCACHE、CONFIGURATION等属性
create '表名', '列族名1', '列族名2', '列族名3'
create '表名', {NAME => '列族名1', VERSIONS => 版本号, TTL => 过期时间, BLOCKCACHE => true}
# 示例
create 'tbl_user', 'info', 'detail'
create 't1', {NAME => 'f1', VERSIONS => 1, TTL => 2592000, BLOCKCACHE => true}
2.1 添加一个列族
# 语法
alter '表名', '列族名'
# 示例
alter 'tbl_user', 'address'
2.2 删除一个列族
# 语法
alter '表名', {NAME=> '列族名', METHOD=> 'delete'}
# 示例
alter 'tbl_user', {NAME=> 'address', METHOD=> 'delete'}
3.3 修改列族的属性
可以修改列族的VERSIONS、IN_MEMORY
# 修改f1列族的版本为5
alter 't1', NAME => 'f1', VERSIONS => 5
# 修改多个列族,修改f2为内存,版本号为5
alter 't1', 'f1', {NAME => 'f2', IN_MEMORY => true}, {NAME => 'f3', VERSIONS => 5}
# 也可以修改table-scope属性,例如MAX_FILESIZE, READONLY,MEMSTORE_FLUSHSIZE, DEFERRED_LOG_FLUSH等。
# 例如,修改region的最大大小为128MB:
alter 't1', MAX_FILESIZE => '134217728'
# change or add the 'f1' column family in table 't1' from defaults
to instead keep a maximum of 5 cell VERSIONS
alter_async 't1', NAME => 'f1', VERSIONS => 5
# delete the 'f1' column family in table 'ns1:t1'
alter_async 'ns1:t1', NAME => 'f1', METHOD => 'delete'
alter_async 'ns1:t1', 'delete' => 'f1'
# change the max size of a family to 128MB
alter 't1', METHOD => 'table_att', MAX_FILESIZE => '134217728'
alter 't1', {NAME => 'f1'}, {NAME => 'f2', METHOD => 'delete'}
alter_status '表名'
# 语法
describe '表名'
# 示例
describe 'tbl_user'
# 语法
exists '表名'
# 示例
exists 'tbl_user'
通过enable和disable来启用/禁用这个表,相应的可以通过is_enabled和is_disabled来检查表是否被禁用。
# 语法
enable '表名'
is_enabled '表名'
disable '表名'
is_disabled '表名'
# 示例
disable 'tbl_user'
is_disabled 'tbl_user'
enable 'tbl_user'
is_enabled 'tbl_user'
.
匹配除“\n”和"\r"之外的任何单个字符*
匹配前面的子表达式任意次# 匹配以t开头的表名
disable_all 't.*'
# 匹配指定命名空间ns下的以t开头的所有表
disable_all 'ns:t.*'
# 匹配ns命名空间下的所有表
disable_all 'ns:.*'
enable_all 't.*'
enable_all 'ns:t.*'
enable_all 'ns:.*'
需要先禁用表,然后再删除表,启用的表是不允许删除的
# 语法
disable '表名'
drop '表名'
# 示例
disable 'tbl_user'
drop 'tbl_user'
drop_all 't.*'
drop_all 'ns:t.*'
drop_all 'ns:.*'
通过 var = get_table ‘表名’ 赋值给一个变量对象,然后对象.来调用,就像面向对象编程一样,通过对象.方法来调用,这种方式在操作某个表时就不必每次列举表名了。
locate_region '表名', '行键'
过滤器用于get和scan命令中作为筛选数据的条件,类型关系型数据库中的where的作用
# add/modify a property
alter_namespace 'ns1', {METHOD => 'set', 'PROPERTY_NAME' => 'PROPERTY_VALUE'}
# delete a property
alter_namespace 'ns1', {METHOD => 'unset', NAME=>'PROPERTY_NAME'}
drop_namespace '命名空间名称'
# 语法
# 当列族中只有一个列时'列族名:列名'使用'列族名'
put '表名', '行键', '列族名', '列值'
put '表名', '行键', '列族名:列名', '列值'
# 示例
# 创建表
create 'tbl_user', 'info', 'detail', 'address'
# 第一行数据
put 'tbl_user', 'mengday', 'info:id', '1'
put 'tbl_user', 'mengday', 'info:name', '张三'
put 'tbl_user', 'mengday', 'info:age', '28'
put 'tbl_user', 'mengday', 'detail:birthday', '1990-06-26'
put 'tbl_user', 'mengday', 'detail:email', '[email protected]'
put 'tbl_user', 'mengday', 'detail:create_time', '2019-03-04 14:26:10'
put 'tbl_user', 'mengday', 'address', '上海市'
# 第二行数据
put 'tbl_user', 'vbirdbest', 'info:id', '2'
put 'tbl_user', 'vbirdbest', 'info:name', '李四'
put 'tbl_user', 'vbirdbest', 'info:age', '27'
put 'tbl_user', 'vbirdbest', 'detail:birthday', '1990-06-27'
put 'tbl_user', 'vbirdbest', 'detail:email', '[email protected]'
put 'tbl_user', 'vbirdbest', 'detail:create_time', '2019-03-05 14:26:10'
put 'tbl_user', 'vbirdbest', 'address', '北京市'
# 第一行数据
put 'tbl_user', 'xiaoming', 'info:id', '3'
put 'tbl_user', 'xiaoming', 'info:name', '王五'
put 'tbl_user', 'xiaoming', 'info:age', '26'
put 'tbl_user', 'xiaoming', 'detail:birthday', '1990-06-28'
put 'tbl_user', 'xiaoming', 'detail:email', '[email protected]'
put 'tbl_user', 'xiaoming', 'detail:create_time', '2019-03-06 14:26:10'
put 'tbl_user', 'xiaoming', 'address', '杭州市'
获取表的所有数据
# 语法
scan '表名'
# 示例
scan 'tbl_user'
扫描整个列簇
# 语法
scan '表名', {COLUMN=>'列族名'}
# 示例
scan 'tbl_user', {COLUMN=>'info'}
扫描整个列簇的某个列
# 语法
scan '表名', {COLUMN=>'列族名:列名'}
# 示例
scan 'tbl_user', {COLUMN=>'info:age'}
# 语法
get '表名', '行键'
# 示例
get 'tbl_user', 'mengday'
# 语法
get '表名', '行键', '列族名'
# 示例
get 'tbl_user', 'mengday', 'info'
# 创建表,c1版本为4, 元数据mykey=myvalue
hbase(main):009:0> create 't1', {NAME => 'c1', VERSIONS => 4}, METADATA => { 'mykey' => 'myvalue' }
0 row(s) in 2.2810 seconds
=> Hbase::Table - t1
# 添加列族c2, c3
hbase(main):010:0> alter 't1', 'c2', 'c3'
Updating all regions with the new schema...
1/1 regions updated.
Done.
Updating all regions with the new schema...
1/1 regions updated.
Done.
0 row(s) in 3.8320 seconds
# 出入数据,c1 插入4个版本的值
hbase(main):011:0> put 't1', 'r1', 'c1', 'v1'
0 row(s) in 0.1000 seconds
hbase(main):012:0> put 't1', 'r1', 'c1', 'v11'
0 row(s) in 0.0180 seconds
hbase(main):013:0> put 't1', 'r1', 'c1', 'v111'
0 row(s) in 0.0140 seconds
hbase(main):014:0> put 't1', 'r1', 'c1', 'v1111'
0 row(s) in 0.0140 seconds
# 插入c2、c3的值
hbase(main):015:0> put 't1', 'r1', 'c2', 'v2'
0 row(s) in 0.0140 seconds
hbase(main):016:0> put 't1', 'r1', 'c3', 'v3'
0 row(s) in 0.0210 seconds
# 获取rowKey=r1的一行记录
hbase(main):017:0> get 't1', 'r1'
COLUMN CELL
c1: timestamp=1552819382575, value=v1111
c2: timestamp=1552819392398, value=v2
c3: timestamp=1552819398244, value=v3
3 row(s) in 0.0550 seconds
# 获取rowKey=r1并且 1552819392398 <= 时间戳范围 < 1552819398244
hbase(main):018:0> get 't1', 'r1', {TIMERANGE => [1552819392398, 1552819398244]}
COLUMN CELL
c2: timestamp=1552819392398, value=v2
1 row(s) in 0.0090 seconds
# 获取指定列的值
hbase(main):019:0> get 't1', 'r1', {COLUMN => 'c1'}
COLUMN CELL
c1: timestamp=1552819382575, value=v1111
1 row(s) in 0.0160 seconds
# 获取指定列的值,多个值使用数组表示
hbase(main):020:0> get 't1', 'r1', {COLUMN => ['c1', 'c2', 'c3']}
COLUMN CELL
c1: timestamp=1552819382575, value=v1111
c2: timestamp=1552819392398, value=v2
c3: timestamp=1552819398244, value=v3
3 row(s) in 0.0170 seconds
# 获取c1的值,获取4个版本的值,默认是按照时间戳降续排序的
hbase(main):021:0> get 't1', 'r1', {COLUMN => 'c1', VERSIONS => 4}
COLUMN CELL
c1: timestamp=1552819382575, value=v1111
c1: timestamp=1552819376343, value=v111
c1: timestamp=1552819368993, value=v11
c1: timestamp=1552819362975, value=v1
4 row(s) in 0.0180 seconds
# 获取c1的3个版本值
hbase(main):027:0* get 't1', 'r1', {COLUMN => 'c1', VERSIONS => 3}
COLUMN CELL
c1: timestamp=1552819382575, value=v1111
c1: timestamp=1552819376343, value=v111
c1: timestamp=1552819368993, value=v11
3 row(s) in 0.0090 seconds
# 获取指定时间戳版本的列
hbase(main):022:0> get 't1', 'r1', {COLUMN => 'c1', TIMESTAMP => 1552819376343}
COLUMN CELL
c1: timestamp=1552819376343, value=v111
1 row(s) in 0.0170 seconds
hbase(main):023:0> get 't1', 'r1', {COLUMN => 'c1', TIMESTAMP => 1552819376343, VERSIONS => 4}
COLUMN CELL
c1: timestamp=1552819376343, value=v111
1 row(s) in 0.0130 seconds
# 获取rowKey=r1中的值等于v2的所有列
hbase(main):024:0> get 't1', 'r1', {FILTER => "ValueFilter(=, 'binary:v2')"}
COLUMN CELL
c2: timestamp=1552819392398, value=v2
1 row(s) in 0.0510 seconds
hbase(main):025:0> get 't1', 'r1', {COLUMN => 'c1', ATTRIBUTES => {'mykey'=>'myvalue'}}
COLUMN CELL
c1: timestamp=1552819382575, value=v1111
1 row(s) in 0.0100 seconds
# 语法
delete '表名', '行键', '列族名:列名'
create 'tbl_test', 'columnFamily1'
put 'tbl_test', 'rowKey1', 'columnFamily1:column1', 'value1'
put 'tbl_test', 'rowKey1', 'columnFamily1:column2', 'value2'
delete 'tbl_test', 'rowKey1', 'columnFamily1:column1'
# 语法
deleteall '表名', '行键'
# 示例
deleteall 'tbl_test', 'rowKey1'
先disable表,然后再drop表,最后重新create表
truncate '表名'
# 语法
count '表名'
# 示例
count 'tbl_user'
# 语法
incr '表名', '行键', '列族:列名', 步长值
# 示例
# 注意:incr 可以对不存的行键操作,如果行键已经存在会报错,如果使用put修改了incr的值再使用incr也会报错
# ERROR: org.apache.hadoop.hbase.DoNotRetryIOException: Field is not a long, it's 2 bytes wide
incr 'tbl_user', 'xiaohong', 'info:age', 1
# 点击量:日、周、月
create 'counters', 'daily', 'weekly', 'monthly'
incr 'counters', '20110101', 'daily:hits', 1
incr 'counters', '20110101', 'daily:hits', 1
get_counter 'counters', '20110101', 'daily:hits'
# 语法
scan '表名', {COLUMNS => [ '列族名1:列名1', '列族名1:列名2', ...]}
# 示例
scan 'tbl_user', {COLUMNS => [ 'info:id', 'info:age']}
scan 't1', {COLUMNS => 'c2', TIMESTAMP=> 1552819392398}
# 语法
scan '表名',{TIMERANGE=>[timestamp1, timestamp2]}
# 示例
scan 'tbl_user',{TIMERANGE=>[1551938004321, 1551938036450]}
默认情况下一个列只能存储一个数据,后面如果修改数据就会将原来的覆盖掉,可以通过指定VERSIONS时HBase一列能存储多个值。
create 'tbl_test', 'columnFamily1'
describe 'tbl_test'
# 修改列族版本号
alter 'tbl_test', { NAME=>'columnFamily1', VERSIONS=>3 }
put 'tbl_test', 'rowKey1', 'columnFamily1:column1', 'value1'
put 'tbl_test', 'rowKey1', 'columnFamily1:column1', 'value2'
put 'tbl_test', 'rowKey1', 'columnFamily1:column1', 'value3'
# 默认返回最新的一条数据
get 'tbl_test','rowKey1','columnFamily1:column1'
# 返回3个
get 'tbl_test','rowKey1',{COLUMN=>'columnFamily1:column1', VERSIONS=>3}
# 返回2个
get 'tbl_test','rowKey1',{COLUMN=>'columnFamily1:column1', VERSIONS=>2}
ROWKEY起始行。会先根据这个key定位到region,再向后扫描
# 语法
scan '表名', { STARTROW => '行键名'}
# 示例
scan 'tbl_user', { STARTROW => 'vbirdbest'}
# 语法
scan '表名', { STOPROW => '行键名'}
# 示例
scan 'tbl_user', { STOPROW => 'vbirdbest'}
# 语法
scan '表名', { LIMIT => 行数}
# 示例
scan 'tbl_user', { LIMIT => 2 }
过滤器之间可以使用AND、OR连接多个过滤器。
# 语法:binary 等于某个值
scan '表名', FILTER=>"ValueFilter(=,'binary:列值')"
# 语法 substring:包含某个值
scan '表名', FILTER=>"ValueFilter(=,'substring:列值')"
# 示例
scan 'tbl_user', FILTER=>"ValueFilter(=, 'binary:26')"
scan 'tbl_user', FILTER=>"ValueFilter(=, 'substring:6')"
# 语法 substring:包含某个值
scan '表名', FILTER=>"ColumnPrefixFilter('列名前缀')"
# 示例
scan 'tbl_user', FILTER=>"ColumnPrefixFilter('birth')"
# 通过括号、AND和OR的条件组合多个过滤器
scan 'tbl_user', FILTER=>"ColumnPrefixFilter('birth') AND ValueFilter(=,'substring:26')"
hbase shell在使用的时候经常会报错,这里列举了几个错误:
解决办法:
# 1. 进入zookeeper client模式
cd /usr/local/Cellar/hbase/1.2.9/bin
hbase zkcli
# 2. 在zk client模式下输入ls /hbase/table命令看到zombie table
ls /hbase/table
# 3. 删除表,TABLE_NAME为要删除的表名
rmr /hbase/table/TABLE_NAME
# 4. 重启hbase
./stop-hbase.sh
./start-hbase.sh
# 使用jps查看是否有datanode服务
jps
删除hadoop 的临时目录
/usr/local/Cellar/hadoop/3.1.1/libexec/tmp
# 重启hbase
./stop-hbase.sh
./start-hbase.sh
这个错误出现的原因很多,这里说一下我的错误原因是hbase-site.xml中的有个属性名配置错误, 网上有的是hbase.rootdir, name配置成这个有的时候会报错有的时候不会报错,报错的时候格式化一下hadoop然后再重新启动,这种方式有的时候能解决问题,有的时候解决不了。这里我将hbase.rootdir改为hbase.root.dir 就不报错了,不知道是不是版本不同属性名配置不同,我的hadoop版本为3.1.1,hbase版本为1.2.9
<property>
<name>hbase.root.dirname>
<value>hdfs://localhost:8020/hbasevalue>
property>
相关文档
HBase操作(Shell与Java API)https://blog.csdn.net/u013980127/article/details/52443155