关于这个函数,很少博客详细的介绍。下面就我个人理解简单介绍下。
函数:self_tensor.scatter_add_(dim, index_tensor, other_tensor) → 输出tensor
该函数的意思是:将other_tensor中的数据,按照index_tensor中的索引位置,添加至self_tensor矩阵中。
参数:
dim:表示需要改变的维度,但是注意,假如dim=1,并不是说self_tensor在dim=0上的数据不会改变,这个dim只是在取矩阵数据时不固定dim=1维的索引,使用index_tensor矩阵中的索引。可能这样说还是不太理解,下面会用例子说明。
其中self_tensor表示我们需要改变的tensor矩阵
index_tensor:索引矩阵;
other_tensor:需要添加到self_tensor中的tensor
要求:
1、self_tensor,index_tensor, other_tensor 的维度需要相同,即self.tensor.dim() = index_tensor.dim() = other_tensor.dim();
2、假设dim=d,那么index_tensor矩阵中的所有数据必须小于d-1;
3、假设dim=d,index_tensor矩阵在d维度上的size必须小于self_tensor和other_tensor的size;即index.size(d) <= other_tensor.size(d) 且index.size(d) <= self_tensor.size(d)
三维计算公式:
self[index[i][j][k]][j][k] += other[i][j][k] # 如果 dim == 0
self[i][index[i][j][k]][k] += other[i][j][k] # 如果 dim == 1
self[i][j][index[i][j][k]] += other[i][j][k] # 如果 dim == 2
二维计算公式:
self[index[i][j]][j] += other[i][j] # 如果 dim == 0
self[i][index[i][j]] += other[i][j] # 如果 dim == 1
index_tensor = torch.tensor([[0,1],[1,1]])
print('index_tensor: \n', index_tensor)
self_tensor = torch.arange(0, 4).view(2, 2)
print('self_tensor: \n', self_tensor)
other_tensor = torch.arange(5, 9).view(2, 2)
print('other_tensor: \n', other_tensor)
dim = 0
for i in range(index_tensor.size(0)):
for j in range(index_tensor.size(1)):
replace_index = index_tensor[i][j]
if dim == 0:
# self矩阵的第0维索引
self_tensor[replace_index][j] += other_tensor[i][j]
elif dim == 1:
# self矩阵的第1维索引
self_tensor[i][replace_index] += other_tensor[i][j]
print(self_tensor)
结果:
index_tensor:
tensor([[0, 1],
[1, 1]])
self_tensor:
tensor([[0, 1],
[2, 3]])
other_tensor:
tensor([[5, 6],
[7, 8]])
tensor([[ 5, 1],
[ 9, 17]])
使用函数计算:
index_tensor = torch.tensor([[0,1],[1,1]])
print('index_tensor: \n', index_tensor)
self_tensor = torch.arange(0, 4).view(2, 2)
print('self_tensor: \n', self_tensor)
other_tensor = torch.arange(5, 9).view(2, 2)
print('other_tensor: \n', other_tensor)
self_tensor.scatter_add_(0, index_tensor, other_tensor)
print(self_tensor)
结果:
index_tensor:
tensor([[0, 1],
[1, 1]])
self_tensor:
tensor([[0, 1],
[2, 3]])
other_tensor:
tensor([[5, 6],
[7, 8]])
tensor([[ 5, 1],
[ 9, 17]])