- 【文献阅读笔记】去噪学生网络:DeSTSeg
迎着黎明那道光
文献阅读笔记视觉异常检测笔记异常检测视觉检测深度学习
2023CVPR领域:异常检测目标:图像输入数据文章目录1、模型2、方法3、实验4、引用5、想法1、模型模型分为三个模块,包括教师网络、去噪学生网络和分割网络。分为两个阶段进行训练,第一阶段训练去噪学生网络,第二阶段训练分割网络。2、方法去噪学生网络,主要解决的是异常过度泛化的问题,利用编码器-解码器架构实现去噪。在第一个阶段将合成异常图像输入,训练去噪学生网络输出无异常图像。使用合成异常图像的目
- 【文献阅读笔记】无监督异常检测遇到噪声数据:STKD
迎着黎明那道光
文献阅读笔记视觉异常检测笔记异常检测视觉检测深度学习
2022ICIP领域:异常检测目标:图像输入数据文章目录1、什么是噪声数据2、解决的措施3、模型4、方法5、消融实验6、引用7、想法1、什么是噪声数据在无监督异常检测设置中,用于训练的数据均是正常图片,但由于缺陷可能是细微的,因种种原因可能无法保障用于训练的数据集内均是正常图像,有可能混有异常图像。如果仍然按照原有的假设进行异常检测,将会影响检测性能。2、解决的措施通过迭代执行异常检测步骤和训练步
- 第二十九周:文献阅读笔记(ResMLP)+ pytorch学习(Resnet代码实现)
@默然
笔记pytorch学习人工智能python深度学习机器学习
第二十九周:文献阅读笔记(ResMLP)摘要Abstract1.ResMLP1.1文献摘要1.2文献引言1.3ResMLP方法1.3.1整体流程1.3.2残差多感知机层1.4实验1.4.1数据集1.4.2超参数设置1.4.3主要结果1.4.4监督设置1.4.5自监督设置1.4.5知识蒸馏设置1.5ResMLP的创新点2.pytorch学习(ResNet代码实现)2.1数据集2.2文件结构2.3下载
- 第二十八周:文献阅读笔记(弱监督学习)+ pytorch学习
@默然
笔记学习pytorch深度学习人工智能python
第二十八周:文献阅读笔记(弱监督学习)摘要Abstract1.弱监督学习1.1.文献摘要1.2.引言1.3.不完全监督1.3.1.主动学习与半监督学习1.3.2.通过人工干预1.3.3.无需人工干预1.4.不确切的监督1.5.不准确的监督1.6.弱监督学习的创新点2.pytorch学习2.1.对现有模型进行修改2.2.优化器的使用2.3.完整的模型训练套路总结摘要弱监督学习是一种机器学习方法,其训
- 第二十七周:文献阅读笔记
@默然
笔记
第二十七周:文献阅读笔记摘要AbstractDenseNet网络1.文献摘要2.引言3.ResNets4.DenseBlock5.Poolinglayers6.ImplementationDetails7.Experiments8.FeatureReuse9.代码实现总结摘要DenseNet(密集连接网络)是一种深度学习神经网络架构,由KaimingHe等人在2017年提出。相较于传统的卷积神经网
- 第二十九周:文献阅读笔记(DenseNet)+ pytorch学习
@默然
笔记pytorch学习
第二十九周:文献阅读笔记(DenseNet)+pytorch学习摘要Abstract1、DenseNet文献阅读1.1文献摘要1.2文献引言1.3DenseNets网络1.3.1残差网络1.3.2密集连接1.3.3实施细节1.4实验1.4.1数据集1.4.1.1CIFAR1.4.1.2SVHN1.4.2模型训练1.4.3CIFAR和SVHN的分类结果1.4.4ImageNet上的分类结果1.5总结
- 跨文化能力研究的深化与西方范式面临的质疑
叶小静Stamy
2019-03-083月文献阅读笔记07-《跨文化能力研究》时间:1990-1999机构成立:①国际跨文化研究院1997②国际语言与跨文化交际学会1999③中国跨文化交际学会1995研究主题:文化价值观、文化适应、跨文化能力、跨文化关系、文化认同、权力的不平等中国的主要研究成果:①林大津:跨文化能力包括得体、有效性和正当(属于道德范畴)②贾玉新:跨文化能力由基本的交际能力系统、情感和关系能力系统、
- 儒家视角的跨文化能力理论
叶小静Stamy
2019-03-233月文献阅读笔记19-《跨文化能力研究》【研究者】X.S.Xiao&G.M.Chen【观点】西方文化以自我为中心,在评价交际能力时强调对过程的控制以及预定目标的实现。然而,这种视角并不适合以人际关系为中心的中国儒家文化。在儒家文化看来,一个人的交际能力并不在于能都控制交流过程与实现个人目标,而在于能否以德行感化他人,不断提升自我人格。
- 微生物群落 文献阅读笔记
芜穀杂粱
PatternsandProcessesofMicrobialCommunityAssembly壹微生物群落组装过程的统一理论一、群落理论的框架1.Diversification2.Selection3.Dispersal4.Drift二、微生物群落组装的需要什么样的理论?1.和一般群落理论一致2.同时注重微生物特有的特性Aunifiedconceptualframeworkofmicrobial
- 自动驾驶感知-预测-决策-规划-控制学习(3):感知方向文献阅读笔记
棉花糖永远滴神
自动驾驶学习笔记
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、文章主题二、摘要阅读1.名词理解①点云是什么?②二维图像分割器③轻量化卷积网络提取特征④单模态表达和多模态特征融合的区别⑤基于ROS的多传感器融合感知⑥TensorRT工具2.总结摘要三、绪论解析1.首先分析了车道线检测方面有三类工作2.又分析了三维目标检测研究的三类工作3.综述各章节内容四、硬件与软件设计1.总体方案
- 【多传感器融合导航论文阅读】
今天我刷leetcode了吗
论文阅读学习方法
多传感器融合导航论文积累知识点总结因子图一致因子图文献阅读笔记[IF18.6]知识点总结因子图FactorGraph是概率图的一种,是对函数因子分解的表示图,一般内含两种节点,变量节点和函数节点。因子图存在着:两类节点:变量节点和对应的函数节点变量节点所代表的变量是函数节点的自变量。同类节点之间没有边直接相连。一致因子图一致性指的是在该框架中能够保持一致性地更新变量的值,使得整个概率图模型中的变量
- 第二十五周:文献阅读笔记(swin transformer)
@默然
笔记transformer深度学习人工智能机器学习
第二十五周:文献阅读笔记(swintransformer)摘要Abstract1.swintransformer文献笔记1.1.文献摘要1.2.引言1.3.SwinTransformer原理1.3.1.整体架构1.3.2.PatchMerging1.3.3.VIT中的PatchProjection1.3.4.基于滑动窗口的自注意力1.非重叠窗口中的自注意力2.连续块中的移动窗口分区3.移动窗口所存
- 第二十四周:文献阅读笔记(VIT)
@默然
笔记
第二十四周:文献阅读笔记摘要Abstract1.文献阅读1.1文献题目1.2文献摘要1.3引言1.4VIT1.4.1Embedding层结构详解1.4.2BN和LN算法1.4.3TransformerEncoder详解1.4.4MLPHead(全连接头)1.5实验1.6文献总结2.随机梯度下降(回顾)摘要VIT是一种基于Transformer模型的视觉处理方法。传统上,卷积神经网络(CNN)在计算
- 【文献阅读笔记】基于自监督的异常检测和定位:SSM
迎着黎明那道光
文献阅读笔记视觉异常检测笔记视觉检测深度学习
2022IEEETRANSACTIONSONMULTIMEDIA领域:异常检测目标:图像输入数据文章目录1、模型2、方法2.1、randommasking2.2、restorationnetwork2.3、损失函数2.4、推理时的渐进细化3、实验4、引用5、想法1、模型训练:每个图像实时生成随机的掩码,然后将掩码输入到具有两个预测头的条件自动编码器,一个用于重建图像,一个用于重建掩码。通过随机掩码
- 目标检测文献阅读笔记(一)
山在岭就在
文献阅读笔记文献阅读笔记
如果觉得这篇文章对您有所启发,欢迎关注我的公众号,我会尽可能积极和大家交流,谢谢。最近研究了一段时间的目标检测问题,将阅读的一些文献资料总结如下:1、使用增强2DPCA和ML算法估计的目标追踪(Objecttrackingusingincremental2DPCAlearningandMLestimation)(英文,期刊,2008,EI检索)这篇文章的最大作用就是帮我们找到了增强型2DPCA(双
- 【文献阅读笔记】深度异常检测模型
迎着黎明那道光
视觉异常检测笔记异常检测
文章目录导读相关关键词及其英文描述记录深度异常检测模型Superviseddeepanomalydetection有监督深度异常检测Semi-Superviseddeepanomalydetection半监督深度异常检测Hybriddeepanomalydetection混合深度异常检测One-classneuralnetworkforanomalydetection用于异常检测的一类神经网络Un
- 【文献阅读笔记】SimpleNet: A Simple Network for Image Anomaly Detection and Localization
迎着黎明那道光
视觉异常检测文献阅读笔记笔记视觉检测深度学习
文章目录1、模型2、训练3、推理4、实验结果消融实验一类新奇检测5、代码6、想法2023CVPR领域:异常检测目标:图像输入数据1、模型模块:特征提取器、特征适配器、异常特征生成器、鉴别器模块功能构成特征提取器提取局部特征预训练网络的不同层特征适配器将预训练的特征转移到目标域一层的全连接层异常特征生成器生成异常样本向特征空间添加高斯噪声鉴别器鉴别出正常和异常两层的多层感知机2、训练训练过程:正常样
- 【文献阅读笔记】路径损耗模型公式
迎着黎明那道光
文献阅读笔记通信笔记算法matlab矩阵
信道的路径损耗信道的路径损耗是信道路径损耗真值的分贝数。信道路径损耗真值为发射功率与接收功率之比。信道的路径增益信道的路径增益分贝数时路径损耗的分贝值的负数。通常是负数路径损耗的模型公式Pr=Pt*K*(d0/d)^r其中:Pr是接收功率Pt是发射功率K是依赖于天线特性和平均信道损耗的常系数d0是天线的参考距离d是实际距离r是路径损耗指数K<1,取为d0处的自由空间路径损耗瑞利信道和莱斯信道在实际
- 【文献阅读笔记】关于GANomaly的异常检测方法
迎着黎明那道光
文献阅读笔记视觉异常检测笔记视觉检测深度学习
文章目录1、GANomaly:Semi-SupervisedAnomalyDetectionviaAdversarialTraining模型主要创新2、Skip-GANomaly:SkipConnectedandAdversariallyTrainedEncoder-DecoderAnomalyDetection模型主要创新点3、Industrialsurfacedefectdetectionan
- 【文献阅读笔记】Knowledge-enhanced Visual-Language Pre-training on Chest Radiology Images
Cpdr
论文阅读_副本笔记论文阅读论文笔记
文章目录摘要1.介绍2.相关工作2.1.视觉语言的预训练模型2.2.医学的命名实体识别模型2.3.医学知识增强模型3.方法3.1.算法概述3.2.问题场景3.3.知识编码器3.4.实体提取(Entityextraction)3.5.知识引导的视觉表征学习4.实验4.1.特定领域的知识(Domain-specificKnowledge)4.2.数据集4.2.1.预训练的数据集4.2.2.用于下游评估
- G.M.Chen & W.J. Starosta 的综合的跨文化交际能力模型
叶小静Stamy
2019-03-123月文献阅读笔记10-《跨文化能力研究》定义:跨文化交际能力是交际者在特定的情境中商讨文化意义、辨析文化身份,有效得体地进行交际的能力,由情感、认知和行为过程三个不断发展和完善的过程构成。关键概念:①情感过程指跨文化交际敏感性的发展,即特定情形中个人情绪或感受的变化,包括:自我概念、开明度、中立态度和社交从容。②认知过程即跨文化的意识发展,包括自我意识和文化意识的发展。③行为过
- 自动驾驶4D毫米波雷达文献综述
风靡晚
自动驾驶人工智能机器学习信息与通信信号处理算法
文献阅读笔记:《4DMillimeter-WaveRadarinAutonomousDriving:ASurvey》4D毫米波(mmWave)雷达,能够测量目标的距离、方位角、高度和速度,已经在自动驾驶领域引起了相当大的兴趣。这归因于它在极端环境下的鲁棒性,以及出色的速度和高度测量能力。4D毫米波雷达不仅是毫米波雷达的改进版本,而且还引入了许多重要的研究课题。4D毫米波雷达的原始数据大小比传统雷达
- (论文阅读34-39)理解CNN
朽月初二
论文阅读cnn人工智能笔记学习神经网络深度学习
34.文献阅读笔记简介题目Understandingimagerepresentationsbymeasuringtheirequivarianceandequivalence作者KarelLenc,AndreaVedaldi,CVPR,2015.原文链接http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Lenc_Un
- (论文阅读51-57)图像描述3 53
朽月初二
论文阅读人工智能笔记学习
51.文献阅读笔记(KNN)简介题目ExploringNearestNeighborApproachesforImageCaptioning作者JacobDevlin,SaurabhGupta,RossGirshick,MargaretMitchell,C.LawrenceZitnick,arXiv:1505.04467原文链接http://arxiv.org/pdf/1505.04467.pdf
- (论文阅读46-50)图像描述2
朽月初二
论文阅读计算机视觉笔记学习
46.文献阅读笔记简介题目LearningaRecurrentVisualRepresentationforImageCaptionGeneration作者XinleiChen,C.LawrenceZitnick,arXiv:1411.5654.原文链接http://www.cs.cmu.edu/~xinleic/papers/cvpr15_rnn.pdf关键词2014年rnn图像特征和文本特征相
- (论文阅读40-45)图像描述1
朽月初二
论文阅读计算机视觉笔记学习cnn
40.文献阅读笔记(m-RNN)简介题目ExplainImageswithMultimodalRecurrentNeuralNetworks作者JunhuaMao,WeiXu,YiYang,JiangWang,AlanL.Yuille,arXiv:1410.1090原文链接http://arxiv.org/pdf/1410.1090.pdf关键词m-RNN、multimodal研究问题研究问题:解
- (论文阅读31/100)Stacked hourglass networks for human pose estimation
朽月初二
论文阅读计算机视觉笔记学习
31.文献阅读笔记简介题目Stackedhourglassnetworksforhumanposeestimation作者AlejandroNewell,KaiyuYang,andJiaDeng,ECCV,2016.原文链接https://arxiv.org/pdf/1603.06937.pdf关键词HumanPoseEstimation研究问题CNN运用于HumanPoseEstimation,
- (论文阅读32/100)Flowing convnets for human pose estimation in videos
朽月初二
论文阅读
32.文献阅读笔记简介题目Flowingconvnetsforhumanposeestimationinvideos作者TomasPfister,JamesCharles,andAndrewZisserman,ICCV,2015.原文链接https://arxiv.org/pdf/1506.02897.pdf关键词HumanPoseEstimationinVideos研究问题视频中的人体姿态估计研
- (论文阅读30/100)Convolutional Pose Machines
朽月初二
论文阅读计算机视觉笔记学习
30.文献阅读笔记CPMs简介题目ConvolutionalPoseMachines作者Shih-EnWei,VarunRamakrishna,TakeoKanade,andYaserSheikh,CVPR,2016.原文链接https://arxiv.org/pdf/1602.00134.pdf关键词ConvolutionalPoseMachines(CPMs)、articulatedposee
- (论文阅读28/100 人体姿态估计)Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields
朽月初二
论文阅读计算机视觉人工智能
28.文献阅读笔记简介题目RealtimeMulti-Person2DPoseEstimationusingPartAffinityFields作者ZheCao,TomasSimon,Shih-EnWei,andYaserSheikh,CVPR,2017.原文链接arxiv.org/pdf/1611.08050.pdf【人体姿态估计2】Real-timeMulti-person2dposeesti
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite