Future Failure CodeForces - 838C (博弈论,子集卷积)

大意: 两人轮流操作一个长$n$, 只含前$k$种小写字母的串, 每次操作删除一个字符或者将整个串重排, 每次操作后得到的串不能和之前出现过的串相同, 求多少种串能使先手必胜.

 

 

找下规律发现$n$为奇数必胜, 否则假设$a_i$为字符$i$出现次数, 如果$\frac{n!}{a_1!a_2!...a_k!}$为奇数则必败

$n!$中$2$的幂次为n-__builtin_popcount(n)

所以必败就等价于$a_1+...+a_n=a_1|...|a_n$

设$f_{i,j}$表示前$i$个字符, 状态为$j$的方案数除以总字符数的阶乘

可以得到转移为$f_{i,S}=\sum \frac{1}{x!} f_{i-1,S\oplus x}$

做$O(\log k)$次子集卷积即可, 复杂度是$O(n\log ^2n\log k)$

我写的好像常数太大的没卡过去, 先这样吧

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#define REP(i,a,n) for(int i=a;i<=n;++i)
#define PER(i,a,n) for(int i=n;i>=a;--i)
#define hr putchar(10)
#define pb push_back
#define lc (o<<1)
#define rc (lc|1)
#define mid ((l+r)>>1)
#define ls lc,l,mid
#define rs rc,mid+1,r
#define x first
#define y second
#define io std::ios::sync_with_stdio(false)
#define endl '\n'
#define DB(a) ({REP(__i,1,n) cout<>=1)if(n&1)r=r*a%P;return r;}


void FMT(int *a, int n, int tp) {
	int mx = (1<>i&1) a[j]=(a[j]+tp*a[j^1<>=1) {
		if (k&1) mul(dp,ifac,dp,len);
	}
	int ans = (tot-(ll)dp[n]*fac[n])%P;
	if (ans<0) ans += P;
	printf("%d\n", ans);
}

 

你可能感兴趣的:(Future Failure CodeForces - 838C (博弈论,子集卷积))