深度学习-序列模型 吴恩达第五课第二周作业1答案(Operations on word vectors )

深度学习-序列模型 吴恩达第五课第二周作业1答案(Operations on word vectors )_第1张图片

import numpy as np
from w2v_utils import *

words, word_to_vec_map = read_glove_vecs('data/glove.6B.50d.txt')

深度学习-序列模型 吴恩达第五课第二周作业1答案(Operations on word vectors )_第2张图片

深度学习-序列模型 吴恩达第五课第二周作业1答案(Operations on word vectors )_第3张图片

# GRADED FUNCTION: cosine_similarity

def cosine_similarity(u, v):
    """
    Cosine similarity reflects the degree of similariy between u and v
        
    Arguments:
        u -- a word vector of shape (n,)          
        v -- a word vector of shape (n,)

    Returns:
        cosine_similarity -- the cosine similarity between u and v defined by the formula above.
    """
    
    distance = 0.0
    
    ### START CODE HERE ###
    # Compute the dot product between u and v (≈1 line)
    dot = np.dot(u,v)
    # Compute the L2 norm of u (≈1 line)
    norm_u = np.linalg.norm(u)
    
    # Compute the L2 norm of v (≈1 line)
    norm_v = np.linalg.norm(v)
    # Compute the cosine similarity defined by formula (1) (≈1 line)
    cosine_similarity = dot/(norm_u * norm_v)
    ### END CODE HERE ###
    
    return cosine_similarity
father = word_to_vec_map["father"]
mother = word_to_vec_map["mother"]
ball = word_to_vec_map["ball"]
crocodile = word_to_vec_map["crocodile"]
france = word_to_vec_map["france"]
italy = word_to_vec_map["italy"]
paris = word_to_vec_map["paris"]
rome = word_to_vec_map["rome"]

print("cosine_similarity(father, mother) = ", cosine_similarity(father, mother))
print("cosine_similarity(ball, crocodile) = ",cosine_similarity(ball, crocodile))
print("cosine_similarity(france - paris, rome - italy) = ",cosine_similarity(france - paris, rome - italy))

# GRADED FUNCTION: complete_analogy

def complete_analogy(word_a, word_b, word_c, word_to_vec_map):
    """
    Performs the word analogy task as explained above: a is to b as c is to ____. 
    
    Arguments:
    word_a -- a word, string
    word_b -- a word, string
    word_c -- a word, string
    word_to_vec_map -- dictionary that maps words to their corresponding vectors. 
    
    Returns:
    best_word --  the word such that v_b - v_a is close to v_best_word - v_c, as measured by cosine similarity
    """
    
    # convert words to lower case
    word_a, word_b, word_c = word_a.lower(), word_b.lower(), word_c.lower()
    
    ### START CODE HERE ###
    # Get the word embeddings v_a, v_b and v_c (≈1-3 lines)
    e_a, e_b, e_c = word_to_vec_map[word_a], word_to_vec_map[word_b], word_to_vec_map[word_c]
    ### END CODE HERE ###
    
    words = word_to_vec_map.keys()
    max_cosine_sim = -100              # Initialize max_cosine_sim to a large negative number
    best_word = None                   # Initialize best_word with None, it will help keep track of the word to output

    # loop over the whole word vector set
    for w in words:        
        # to avoid best_word being one of the input words, pass on them.
        if w in [word_a, word_b, word_c] :
            continue
        
        ### START CODE HERE ###
        # Compute cosine similarity between the vector (e_b - e_a) and the vector ((w's vector representation) - e_c)  (≈1 line)
        cosine_sim = cosine_similarity(e_b-e_a, word_to_vec_map[w]-e_c)
        
        # If the cosine_sim is more than the max_cosine_sim seen so far,
            # then: set the new max_cosine_sim to the current cosine_sim and the best_word to the current word (≈3 lines)
        if cosine_sim > max_cosine_sim:
            max_cosine_sim = cosine_sim
            best_word = w
        ### END CODE HERE ###
        
    return best_word
triads_to_try = [('italy', 'italian', 'spain'), ('india', 'delhi', 'japan'), ('man', 'woman', 'boy'), ('small', 'smaller', 'large')]
for triad in triads_to_try:
    print ('{} -> {} :: {} -> {}'.format( *triad, complete_analogy(*triad,word_to_vec_map)))

深度学习-序列模型 吴恩达第五课第二周作业1答案(Operations on word vectors )_第4张图片

g = word_to_vec_map['woman'] - word_to_vec_map['man']
print(g)

深度学习-序列模型 吴恩达第五课第二周作业1答案(Operations on word vectors )_第5张图片

print ('List of names and their similarities with constructed vector:')

# girls and boys name
name_list = ['john', 'marie', 'sophie', 'ronaldo', 'priya', 'rahul', 'danielle', 'reza', 'katy', 'yasmin']

for w in name_list:
    print (w, cosine_similarity(word_to_vec_map[w], g))

深度学习-序列模型 吴恩达第五课第二周作业1答案(Operations on word vectors )_第6张图片

print('Other words and their similarities:')
word_list = ['lipstick', 'guns', 'science', 'arts', 'literature', 'warrior','doctor', 'tree', 'receptionist', 
             'technology',  'fashion', 'teacher', 'engineer', 'pilot', 'computer', 'singer']
for w in word_list:
    print (w, cosine_similarity(word_to_vec_map[w], g))

深度学习-序列模型 吴恩达第五课第二周作业1答案(Operations on word vectors )_第7张图片

深度学习-序列模型 吴恩达第五课第二周作业1答案(Operations on word vectors )_第8张图片

深度学习-序列模型 吴恩达第五课第二周作业1答案(Operations on word vectors )_第9张图片

def neutralize(word, g, word_to_vec_map):
    """
    Removes the bias of "word" by projecting it on the space orthogonal to the bias axis. 
    This function ensures that gender neutral words are zero in the gender subspace.
    
    Arguments:
        word -- string indicating the word to debias
        g -- numpy-array of shape (50,), corresponding to the bias axis (such as gender)
        word_to_vec_map -- dictionary mapping words to their corresponding vectors.
    
    Returns:
        e_debiased -- neutralized word vector representation of the input "word"
    """
    
    ### START CODE HERE ###
    # Select word vector representation of "word". Use word_to_vec_map. (≈ 1 line)
    e = word_to_vec_map[word]
    
    # Compute e_biascomponent using the formula give above. (≈ 1 line)
    e_biascomponent = np.dot(e, g) * g/np.square(np.linalg.norm(g))
 
    # Neutralize e by substracting e_biascomponent from it 
    # e_debiased should be equal to its orthogonal projection. (≈ 1 line)
    e_debiased = e - e_biascomponent
    ### END CODE HERE ###
    
    return e_debiased
e = "receptionist"
print("cosine similarity between " + e + " and g, before neutralizing: ", cosine_similarity(word_to_vec_map["receptionist"], g))

e_debiased = neutralize("receptionist", g, word_to_vec_map)
print("cosine similarity between " + e + " and g, after neutralizing: ", cosine_similarity(e_debiased, g))

深度学习-序列模型 吴恩达第五课第二周作业1答案(Operations on word vectors )_第10张图片

深度学习-序列模型 吴恩达第五课第二周作业1答案(Operations on word vectors )_第11张图片

def equalize(pair, bias_axis, word_to_vec_map):
    """
    Debias gender specific words by following the equalize method described in the figure above.
    
    Arguments:
    pair -- pair of strings of gender specific words to debias, e.g. ("actress", "actor") 
    bias_axis -- numpy-array of shape (50,), vector corresponding to the bias axis, e.g. gender
    word_to_vec_map -- dictionary mapping words to their corresponding vectors
    
    Returns
    e_1 -- word vector corresponding to the first word
    e_2 -- word vector corresponding to the second word
    """
    
    ### START CODE HERE ###
    # Step 1: Select word vector representation of "word". Use word_to_vec_map. (≈ 2 lines)
    w1, w2 = pair[0], pair[1]
    e_w1, e_w2 = word_to_vec_map[w1], word_to_vec_map[w2]
    
    # Step 2: Compute the mean of e_w1 and e_w2 (≈ 1 line)
    mu = (e_w1 + e_w2) /2

    # Step 3: Compute the projections of mu over the bias axis and the orthogonal axis (≈ 2 lines)
    mu_B = np.dot(mu, bias_axis) * bias_axis/np.dot(bias_axis, bias_axis)
    mu_orth = mu - mu_B

    # Step 4: Use equations (7) and (8) to compute e_w1B and e_w2B (≈2 lines)
    e_w1B = np.dot(e_w1, bias_axis) * bias_axis/np.dot(bias_axis, bias_axis)
    e_w2B = np.dot(e_w2, bias_axis) * bias_axis/np.dot(bias_axis, bias_axis)
        
    # Step 5: Adjust the Bias part of e_w1B and e_w2B using the formulas (9) and (10) given above (≈2 lines)
    temp = np.sqrt(np.abs(1. - np.dot(mu_orth, mu_orth)))
    corrected_e_w1B = temp * (e_w1B - mu_B) / np.abs( e_w1 - mu_orth - mu_B)
    corrected_e_w2B = temp * (e_w2B - mu_B) / np.abs( e_w2 - mu_orth - mu_B)

    # Step 6: Debias by equalizing e1 and e2 to the sum of their corrected projections (≈2 lines)
    e1 = corrected_e_w1B + mu_orth
    e2 = corrected_e_w2B + mu_orth
                                                                
    ### END CODE HERE ###
    
    return e1, e2
print("cosine similarities before equalizing:")
print("cosine_similarity(word_to_vec_map[\"man\"], gender) = ", cosine_similarity(word_to_vec_map["man"], g))
print("cosine_similarity(word_to_vec_map[\"woman\"], gender) = ", cosine_similarity(word_to_vec_map["woman"], g))
print()
e1, e2 = equalize(("man", "woman"), g, word_to_vec_map)
print("cosine similarities after equalizing:")
print("cosine_similarity(e1, gender) = ", cosine_similarity(e1, g))
print("cosine_similarity(e2, gender) = ", cosine_similarity(e2, g))

深度学习-序列模型 吴恩达第五课第二周作业1答案(Operations on word vectors )_第12张图片

你可能感兴趣的:(吴恩达深度学习作业)