数据结构-堆

堆的介绍

  • 它是完全二叉树。这也就是说,除了数的最后一层节点不需要是满的,其他的每一层从左到右都完全是满的。
  • 他常常用一个数组实现。
  • 堆中的每一个节点都满足堆的条件,也就是说每一个节点的关键字都大于(或等于)这个节点的子节点的关键字。
  • 在一个升序优先级队列中,最大关键字的数据项被称为有最高的优先级。
  • 优先级队列提供了数据插入和移除最大最大数据项方法的抽象数据类型
  • 堆是优先级队列ADT的有效实现形式
  • 最大数据项总是在根的位置上
  • 堆不能有序的遍历所有的数据,不能找到特定关键字数据项的位置,也不能移除特定关键字的数据项
  • 堆通常用数组来实现,表现为一棵完全二叉树。根节点的下标为0,最后一个节点的下标为N-1。
  • 每个节点的关键字都小于他的父节点,大于他的子节点。
  • 要插入的数据项总是先被存放在数组第一个空的单元中,然后在向上筛选他至适当的位置
  • 当从跟移除一个数据项时,用数组中最后一个数据项取代他的位置,然后在向下筛选这个节点值适当的位置。
  • 向上筛选和向下筛选算法可以被看作是一系列的变换,但更有效的做法是进行一些列复制

堆的Java实现如下

// heap.java
// demonstrates heaps
// to run this program: C>java HeapApp
import java.io.*;
////////////////////////////////////////////////////////////////
class Node
   {
   private int iData;             // data item (key)
// -------------------------------------------------------------
   public Node(int key)           // constructor
      { iData = key; }
// -------------------------------------------------------------
   public int getKey()
      { return iData; }
// -------------------------------------------------------------
   public void setKey(int id)
      { iData = id; }
// -------------------------------------------------------------
   }  // end class Node
////////////////////////////////////////////////////////////////
class Heap
   {
   private Node[] heapArray;
   private int maxSize;           // size of array
   private int currentSize;       // number of nodes in array
// -------------------------------------------------------------
   public Heap(int mx)            // constructor
      {
      maxSize = mx;
      currentSize = 0;
      heapArray = new Node[maxSize];  // create array
      }
// -------------------------------------------------------------
   public boolean isEmpty()
      { return currentSize==0; }
// -------------------------------------------------------------
   public boolean insert(int key)
      {
      if(currentSize==maxSize)
         return false;
      Node newNode = new Node(key);
      heapArray[currentSize] = newNode;
      trickleUp(currentSize++);
      return true;
      }  // end insert()
// -------------------------------------------------------------
   public void trickleUp(int index)
      {
      int parent = (index-1) / 2;
      Node bottom = heapArray[index];

      while( index > 0 &&
             heapArray[parent].getKey() < bottom.getKey() )
         {
         heapArray[index] = heapArray[parent];  // move it down
         index = parent;
         parent = (parent-1) / 2;
         }  // end while
      heapArray[index] = bottom;
      }  // end trickleUp()
// -------------------------------------------------------------
   public Node remove()           // delete item with max key
      {                           // (assumes non-empty list)
      Node root = heapArray[0];
      heapArray[0] = heapArray[--currentSize];
      trickleDown(0);
      return root;
      }  // end remove()
// -------------------------------------------------------------
   public void trickleDown(int index)
      {
      int largerChild;
      Node top = heapArray[index];       // save root
      while(index < currentSize/2)       // while node has at
         {                               //    least one child,
         int leftChild = 2*index+1;
         int rightChild = leftChild+1;
                                         // find larger child
         if(rightChild < currentSize &&  // (rightChild exists?)
                             heapArray[leftChild].getKey() <
                             heapArray[rightChild].getKey())
            largerChild = rightChild;
         else
            largerChild = leftChild;
                                         // top >= largerChild?
         if( top.getKey() >= heapArray[largerChild].getKey() )
            break;
                                         // shift child up
         heapArray[index] = heapArray[largerChild];
         index = largerChild;            // go down
         }  // end while
      heapArray[index] = top;            // root to index
      }  // end trickleDown()
// -------------------------------------------------------------
   public boolean change(int index, int newValue)
      {
      if(index<0 || index>=currentSize)
         return false;
      int oldValue = heapArray[index].getKey(); // remember old
      heapArray[index].setKey(newValue);  // change to new

      if(oldValue < newValue)             // if raised,
         trickleUp(index);                // trickle it up
      else                                // if lowered,
         trickleDown(index);              // trickle it down
      return true;
      }  // end change()
// -------------------------------------------------------------
   public void displayHeap()
      {
      System.out.print("heapArray: ");    // array format
      for(int m=0; mif(heapArray[m] != null)
            System.out.print( heapArray[m].getKey() + " ");
         else
            System.out.print( "-- ");
      System.out.println();
                                          // heap format
      int nBlanks = 32;
      int itemsPerRow = 1;
      int column = 0;
      int j = 0;                          // current item
      String dots = "...............................";
      System.out.println(dots+dots);      // dotted top line

      while(currentSize > 0)              // for each heap item
         {
         if(column == 0)                  // first item in row?
            for(int k=0; k// preceding blanks
               System.out.print(' ');
                                          // display item
         System.out.print(heapArray[j].getKey());

         if(++j == currentSize)           // done?
            break;

         if(++column==itemsPerRow)        // end of row?
            {
            nBlanks /= 2;                 // half the blanks
            itemsPerRow *= 2;             // twice the items
            column = 0;                   // start over on
            System.out.println();         //    new row
            }
         else                             // next item on row
            for(int k=0; k2-2; k++)
               System.out.print(' ');     // interim blanks
         }  // end for
      System.out.println("\n"+dots+dots); // dotted bottom line
      }  // end displayHeap()
// -------------------------------------------------------------
   }  // end class Heap
////////////////////////////////////////////////////////////////
class HeapApp
   {
   public static void main(String[] args) throws IOException
      {
      int value, value2;
      Heap theHeap = new Heap(31);  // make a Heap; max size 31
      boolean success;

      theHeap.insert(70);           // insert 10 items
      theHeap.insert(40);
      theHeap.insert(50);
      theHeap.insert(20);
      theHeap.insert(60);
      theHeap.insert(100);
      theHeap.insert(80);
      theHeap.insert(30);
      theHeap.insert(10);
      theHeap.insert(90);

      while(true)                   // until [Ctrl]-[C]
         {
         System.out.print("Enter first letter of ");
         System.out.print("show, insert, remove, change: ");
         int choice = getChar();
         switch(choice)
            {
            case 's':                        // show
               theHeap.displayHeap();
               break;
            case 'i':                        // insert
               System.out.print("Enter value to insert: ");
               value = getInt();
               success = theHeap.insert(value);
               if( !success )
                  System.out.println("Can't insert; heap full");
               break;
            case 'r':                        // remove
               if( !theHeap.isEmpty() )
                  theHeap.remove();
               else
                  System.out.println("Can't remove; heap empty");
               break;
            case 'c':                        // change
               System.out.print("Enter current index of item: ");
               value = getInt();
               System.out.print("Enter new key: ");
               value2 = getInt();
               success = theHeap.change(value, value2);
               if( !success )
                  System.out.println("Invalid index");
               break;
            default:
               System.out.println("Invalid entry\n");
            }  // end switch
         }  // end while
      }  // end main()
//-------------------------------------------------------------
   public static String getString() throws IOException
      {
      InputStreamReader isr = new InputStreamReader(System.in);
      BufferedReader br = new BufferedReader(isr);
      String s = br.readLine();
      return s;
      }
//-------------------------------------------------------------
   public static char getChar() throws IOException
      {
      String s = getString();
      return s.charAt(0);
      }
//-------------------------------------------------------------
   public static int getInt() throws IOException
      {
      String s = getString();
      return Integer.parseInt(s);
      }
//-------------------------------------------------------------
  }  // end class HeapApp
////////////////////////////////////////////////////////////////

你可能感兴趣的:(数据结构)